Bài 4 trang 68 SGK Giải tích 12


Giải bài 4 trang 68 SGK Giải tích 12. So sánh các cặp số sau:

Lựa chọn câu để xem lời giải nhanh hơn

So sánh các cặp số sau:

LG a

a) \({\log_3}5\) và \({\log_7}4\);     

Phương pháp giải:

Sử dụng so sánh bắc cầu, so sánh với \(1\)

Lời giải chi tiết:

Ta có: \({\log _3}5 > {\log _3}3 = 1;\) \({\log _7}4 < {\log _7}7 = 1\).

Do đó \({\log _3}5 > 1 > {\log _7}4\) hay \({\log _3}5 > {\log _7}4\).

LG b

b) \(\log_{0,3}2\) và \({\log_5}3\);

Phương pháp giải:

Sử dụng so sánh bắc cầu, so sánh với \(0\)

Lời giải chi tiết:

Ta có: \({\log _{0,3}}2 < {\log _{0,3}}1 = 0\) (vì \(0 < 0,3 < 1\)).

Lại có \({\log _5}3 > {\log _5}1 = 0\) (vì \(5 > 1\)).

Do đó \({\log _{0,3}}2 < 0 < {\log _5}3\) hay \({\log _{0,3}}2 < {\log _5}3\).

LG c

c) \({\log _2}10\) và \({\log_5}30\).

Phương pháp giải:

Sử dụng so sánh bắc cầu, so sánh với \(3\)

Lời giải chi tiết:

Ta có: \({\log _2}10 > {\log _2}8 = {\log _2}\left( {{2^3}} \right) = 3\)

Lại có \({\log _5}30 < {\log _5}125 = {\log _5}\left( {{5^3}} \right) = 3\).

Do đó \({\log _2}10 > 3 > {\log _3}50\) hay \({\log _2}10 > {\log _3}50\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.6 trên 23 phiếu

Các bài liên quan: - Bài 3. Lôgarit

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài