Lý thuyết Tích phân Toán 12 Kết nối tri thức>
1.Khái niệm tích phân a) Diện tích hình thang cong
1.Khái niệm tích phân
a) Diện tích hình thang cong
Nếu hàm số f(x) liên tục và không âm trên đoạn \(\left[ {a;b} \right]\), thì diện tích S của hình thang cong giới hạn bởi đồ thị y = f(x), trục hoành và hai đường thẳng x = a, x = b là S = F(b) – F(a), trong đó F(x) là một nguyên hàm của hàm số f(x) trên \(\left[ {a;b} \right]\). |
b) Định nghĩa tích phân
Cho hàm số f(x) liên tục trên đoạn \(\left[ {a;b} \right]\). Nếu F(x) là một nguyên hàm của hàm số f(x) trên đoạn \(\left[ {a;b} \right]\) thì hiệu số F(b) – F(a) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu là \(\int\limits_a^b {f(x)dx} \). |
Ý nghĩa hình học của tích phân:
Nếu hàm số f(x) liên tục và không âm trên đoạn \(\left[ {a;b} \right]\), thì tích phân \(\int\limits_a^b {f(x)dx} \) là diện tích S của hình thang cong giới hạn bởi đồ thị y = f(x), trục hoành và hai đường thẳng x = a, x = b.
2. Tính chất của tích phân
|
- Giải mục 1 trang 12,13,14 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải mục 2 trang 16,17 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 4.8 trang 18 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 4.9 trang 18 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 4.10 trang 18 SGK Toán 12 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức