Toán 10, giải toán lớp 10 chân trời sáng tạo
Bài 3. Tích của một số với một vectơ Toán 10 Chân trời ..
Lý thuyết Tích của một số với một vecto >
1. Tích của một số với một vecto và các tính chất
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
1. Tích của một số với một vecto và các tính chất
+) Tích của một số thực \(k\)với một vecto \(\overrightarrow a \ne \overrightarrow 0 \) là một vecto, kí kiệu là \(k\overrightarrow a .\)
+) Vecto \(k\overrightarrow a \) có độ dài bằng \(\left| k \right|\left| {\overrightarrow a } \right|\) và
Cùng hướng với vecto \(\overrightarrow a \) nếu \(k > 0\)
Ngược hướng với vecto \(\overrightarrow a \) nếu \(k < 0\)
+) Quy ước: \(0.\overrightarrow a = \overrightarrow 0 \) và \(k.\overrightarrow 0 = \overrightarrow 0 \)
+) Tính chất: Với hai vecto \(\overrightarrow a ,\overrightarrow b \) và hai số thực \(k,t\) ta luôn có:
\(\begin{array}{l}k(t\overrightarrow a ) = (kt)\;\overrightarrow a \\(k + t)\,\overrightarrow a = k\overrightarrow a + t\overrightarrow a \\k(\overrightarrow a + \overrightarrow b ) = k\overrightarrow a + k\overrightarrow b ;\quad k(\overrightarrow a - \overrightarrow b ) = k\overrightarrow a - k\overrightarrow b \\1\;\overrightarrow a = \overrightarrow a ;\;\;( - 1)\;\overrightarrow a = - \,\overrightarrow a \end{array}\)
2. Điều kiện để hai vecto cùng phương
+) Hai vecto \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương khi và chỉ khi tồn tại \(k\) để \(\overrightarrow a = k\overrightarrow b .\)
+) Nhận xét:
Ba điểm phân biệt A, B, C thẳng hàng \( \Leftrightarrow \overrightarrow {AB} = k\overrightarrow {AC} .\)
+) Chú ý:
Cho hai vecto \(\overrightarrow a \) và \(\overrightarrow b \) không cùng phương. Với mỗi vecto \(\overrightarrow c \) luôn tồn tại duy nhất cặp số thực \((m;n)\) sao cho \(\overrightarrow c = m\,\overrightarrow a + n\,\overrightarrow b \)

- Giải mục 1 trang 94, 95 SGK Toán 10 tập 1 - Chân trời sáng tạo
- Giải mục 2 trang 96 SGK Toán 10 tập 1 - Chân trời sáng tạo
- Giải bài 1 trang 97 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 2 trang 97 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 3 trang 97 SGK Toán 10 tập 1 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ - SGK Toán 10 CTST
- Lý thuyết Xác suất của biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Không gian mẫu và biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Ba đường conic trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ - SGK Toán 10 CTST
- Lý thuyết Xác suất của biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Không gian mẫu và biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Ba đường conic trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo




