
1. Vectơ chỉ phương của đường thẳng
Định nghĩa :
vectơ \(\vec{u}\) được gọi là vectơ chỉ phương của đường thẳng \(∆\) nếu \(\vec{u}\) ≠ \(\vec{0}\) và giá của \(\vec{u}\) song song hoặc trùng với \(∆\)
Nhận xét :
- Nếu \(\vec{u}\) là một vectơ chỉ phương của đường thẳng \(∆\) thì \(k\vec{u} ( k≠ 0)\) cũng là một vectơ chỉ phương của \(∆\) , do đó một đường thẳng có vô số vectơ chỉ phương.
- Một đường thẳng hoàn toàn được xác định nếu biết một điểm và một vectơ chỉ phương của đường thẳng đó.
2. Phương trình tham số của đường thẳng
- Phương trình tham số của đường thẳng \(∆\) đi qua điểm \(M_0(x_0 ;y_0)\) và nhận vectơ \(\vec{u} = (u_1; u_2)\) làm vectơ chỉ phương là :
\(∆\) : \(\left\{\begin{matrix} x= x_{0}+tu_{1}& \\ y= y_{0}+tu_{2}& \end{matrix}\right.\)
-Khi \(u_1≠ 0\) thì tỉ số \(k= \dfrac{u_{2}}{u_{1}}\) được gọi là hệ số góc của đường thẳng.
Từ đây, ta có phương trình đường thẳng \(∆\) đi qua điểm \(M_0(x_0 ;y_0)\) và có hệ số góc k là:
\(y – y_0 = k(x – x_0)\)
Chú ý: Ta đã biết hệ số góc \(k = \tan α\) với góc \(α\) là góc của đường thẳng \(∆\) hợp với chiều dương của trục \(Ox\)
3. Vectơ pháp tuyến của đường thẳng
Định nghĩa: Vectơ \(\vec{n}\) được gọi là vectơ pháp tuyến của đường thẳng \(∆\) nếu \(\vec{n}\) ≠ \(\vec{0}\) và \(\vec{n}\) vuông góc với vectơ chỉ phương của \(∆\)
Nhận xét:
- Nếu \(\vec{n}\) là một vectơ pháp tuyến của đường thẳng \(∆\) thì k\(\vec{n}\) \((k ≠ 0)\) cũng là một vectơ pháp tuyến của \(∆\), do đó một đường thẳng có vô số vec tơ pháp tuyến.
- Một đường thẳng được hoàn toàn xác định nếu biết một và một vectơ pháp tuyến của nó.
4. Phương trình tổng quát của đường thẳng
Định nghĩa: Phương trình \(ax + by + c = 0\) với \(a\) và \(b\) không đồng thời bằng \(0\), được gọi là phương trình tổng quát của đường thẳng.
Trường hợp đặc biết:
+ Nếu \(a = 0 => y = \dfrac{-c}{b}; ∆ // Ox\) hoặc trùng Ox (khi c=0)
+ Nếu \(b = 0 => x = \dfrac{-c}{a}; ∆ // Oy\) hoặc trùng Oy (khi c=0)
+ Nếu \(c = 0 => ax + by = 0 => ∆\) đi qua gốc tọa độ
+ Nếu \(∆\) cắt \(Ox\) tại \(A(a; 0)\) và \(Oy\) tại \(B (0; b)\) thì ta có phương trình đoạn chắn của đường thẳng \(∆\) :
\(\dfrac{x}{a} + \dfrac{y}{b} = 1\)
5. Vị trí tương đối của hai đường thẳng
Xét hai đường thẳng ∆1 và ∆2
có phương trình tổng quát lần lượt là :
a1x+b1y + c1 = 0 và a2x+b2y +c2 = 0
Điểm \(M_0(x_0 ;y_0)\)) là điểm chung của ∆1 và ∆2 khi và chỉ khi \((x_0 ;y_0)\) là nghiệm của hệ hai phương trình:
(1) \(\left\{\begin{matrix} a_{1}x+b_{1}y +c_{1} = 0& \\ a_{2}x+b_{2}y+c_{2}= 0& \end{matrix}\right.\)
Ta có các trường hợp sau:
a) Hệ (1) có một nghiệm: ∆1 cắt ∆2
b) Hệ (1) vô nghiệm: ∆1 // ∆2
c) Hệ (1) có vô số nghiệm: ∆1 \( \equiv \)∆2
6.Góc giữa hai đường thẳng
Hai đường thẳng ∆1 và ∆2 cắt nhau tạo thành 4 góc.
Nếu ∆1 không vuông góc với ∆2 thì góc nhọn trong số bốn góc đó được gọi là góc giữa hai đường thẳng ∆1 và ∆2.
Nếu ∆1 vuông góc với ∆2 thì ta nói góc giữa ∆1 và ∆2 bằng 900.
Trường hợp ∆1 và ∆2 song song hoặc trùng nhau thì ta quy ước góc giữa ∆1 và ∆2 bằng 00.
Như vậy góc giữa hai đường thẳng luôn bé hơn hoặc bằng 900
Góc giữa hai đường thẳng ∆1 và ∆2 được kí hiệu là \(\widehat{(\Delta _{1},\Delta _{2})}\)
Cho hai đường thẳng:
∆1: a1x+b1y + c1 = 0
∆2: a2x+b2y + c2 = 0
Đặt \(\varphi\) = \(\widehat{(\Delta _{1},\Delta _{2})}\)
\(\cos \varphi\) = \(\dfrac{|a_{1}.a_{2}+b_{1}.b_{2}|}{\sqrt{{a_{1}}^{2}+{b_{1}}^{2}}\sqrt{{a_{2}}^{2}+{b_{2}}^{2}}}\)
Chú ý:
+ \({\Delta _1} \bot {\Delta _2} \Leftrightarrow {n_1} \bot {n_2}\) \( \Leftrightarrow {a_1}.{a_2} + {b_1}.{b_2} = 0\)
+ Nếu \({\Delta _1}\) và \({\Delta _2}\) có phương trình y = k1 x + m1 và y = k2 x + m2 thì
\({\Delta _1} \bot {\Delta _2} \Leftrightarrow {k_1}.{k_2} = - 1\)
7. Công thức tính khoảng cách từ một điểm đến một đường thẳng
Trong mặt phẳng \(Oxy\) cho đường thẳng \(∆\) có phương trình \(ax+by+c=0\) và điểm \(M_0(x_0 ;y_0)\)).
Khoảng cách từ điểm \(M_0\) đến đường thẳng \(∆\) kí hiệu là \(d(M_0,∆)\), được tính bởi công thức
\(d(M_0,∆)=\frac{|ax_{0}+by_{0}+c|}{\sqrt{a^{2}+b^{2}}}\)
Loigiaihay.com
Giải câu hỏi 1 trang 70 SGK Hình học 10. Trong mặt phẳng Oxy cho đường thẳng là đồ thị của hàm số...
Giải câu hỏi 2 trang 71 SGK Hình học 10. Hãy tìm một điểm có tọa độ xác định và một vectơ chỉ phương của đường thẳng có phương trình tham số...
Giải câu hỏi 3 trang 72 SGK Hình học 10. Tính hệ số góc của đường thẳng d có vectơ chỉ phương là ...
Giải câu hỏi 4 trang 73 SGK Hình học 10. Cho đường thẳng Δ có phương trình...
Giải câu hỏi 5 trang 74 SGK Hình học 10. Hãy chứng minh nhận xét trên....
Giải câu hỏi 6 trang 74 SGK Hình học 10. Hãy tìm tọa độ của vectơ chỉ phương của đường thẳng có phương trình: 3x + 4y + 5 = 0....
Giải câu hỏi 7 trang 76 SGK Hình học 10. Trong mặt phẳng Oxy, hãy vẽ các đường thẳng có phương trình sau đây:...
Xét vị trí tương đối của đường thẳng Δ: x – 2y + 1 = 0 với mỗi đường thẳng sau:...
Giải câu hỏi 9 trang 78 SGK Hình học 10. Cho hình chữ nhật ABCD có tâm I và cạnh AB = 1, AD = √3....
Giải bài 1 trang 80 SGK Hình học 10. Lập phương trình tham số của đường thẳng d trong mỗi trường hợp sau:
Giải câu hỏi 10 trang 80 SGK Hình học 10. Tính khoảng cách từ các điểm M(-2; 1) và O(0; 0) đến đường thẳng có phương trình: 3x-2y = 0....
Giải bài 2 trang 80 SGK Hình học 10.Lập phương trình tổng quát của đường thẳng ∆ trong mỗi trường hợp sau:
Giải bài 3 trang 80 SGK Hình học 10. Cho tam giác ABC có:
Giải bài 4 trang 80 SGK Hình học 10. Viết phương trình tổng quát của đường thẳng
Giải bài 5 trang 80 SGK Hình học 10. Xét vị trí tương đối của các cặp đường thẳng sau đây:
Giải bài 6 trang 80 SGK Hình học 10. Cho đường thẳng d có phương trình tham số
Giải bài 7 trang 81 SGK Hình học 10. Tìm số đo của góc giữa hai đường thẳng
Giải bài 8 trang 81 SGK Hình học 10. Tìm khoảng cách từ điểm đến đường thẳng
Giải bài 9 trang 81 SGK Hình học 10. Tìm bán kính của đường tròn
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: