Lý thuyết Giải tam giác và ứng dụng thực tế >
Giải tam giác là tìm số đo các cạnh và các góc chưa biết của tam giác.
Giải tam giác là tìm số đo các cạnh và các góc chưa biết của tam giác.
1. Định lí cosin
Trong tam giác ABC:
\(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc\cos A\\{b^2} = {c^2} + {a^2} - 2ca\cos B\\{c^2} = {a^2} + {b^2} - 2ab\cos C\end{array}\)
Hệ quả
\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}};\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\)
2. Định lí sin
Trong tam giác ABC: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R.\)
(R là bán kính đường tròn ngoại tiếp tam giác ABC)
Hệ quả
\(a = 2R.\sin A;\quad b = 2R\sin B;\quad c = 2R\sin C\)
\(\sin A = \frac{a}{{2R}};\quad \sin B = \frac{b}{{2R}};\quad \sin C = \frac{c}{{2R}}.\)
3. Các công thức tính diện tích tam giác
1) \(S = \frac{1}{2}a{h_a} = \frac{1}{2}b{h_b} = \frac{1}{2}c{h_c}\)
2) \(S = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B = \frac{1}{2}ab\sin C\)
3) \(S = \frac{{abc}}{{4R}}\)
4) \(S = pr = \frac{{(a + b + c).r}}{2}\)
5) \(S = \sqrt {p(p - a)(p - b)(p - c)} \) (Công thức Heron)
- Giải mục 1 trang 74, 75 SGK Toán 10 tập 1 - Chân trời sáng tạo
- Giải mục 2 trang 75, 76, 77 SGK Toán 10 tập 1 - Chân trời sáng tạo
- Giải bài 1 trang 77 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 2 trang 77 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 3 trang 77 SGK Toán 10 tập 1 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải Hoạt động 3 trang 96 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 2 trang 94 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 1 trang 92, 93 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 3 trang 90 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 2 trang 89 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 3 trang 96 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 2 trang 94 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 1 trang 92, 93 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 3 trang 90 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 2 trang 89 SGK Toán 10 tập 2 - Chân trời sáng tạo