Cho hai đoạn thẳng $BD$ và $EC$ vuông góc với nhau tại $A$ sao cho $AB = AE,AD = AC,AB < AC.$ Phát biểu nào trong các phát biểu sau đây là sai:
\(\Delta AED = \Delta ABC\)
$BC = ED$
$EB = CD$
\(\widehat {ABC} = \widehat {AED}\) .
Cho tam giác $DEF$ và tam giác $HKG$ có $DE = HK$ , \(\widehat E = \widehat K\), $EF = KG.$ Biết \(\widehat D = {70^0}\). Số đo góc $H$ là:
\({70^0}\)
\({80^0}\)
\({90^0}\)
\({100^0}\)
Cho tam giác $ABC$ có \(\widehat A = {90^0}\), tia phân giác $BD$ của góc $B$ (\(D \in AC\)). Trên cạnh $BC$ lấy điểm $E$ sao cho $BE = BA.$ Hai góc nào sau đây bằng nhau?
\(\widehat {EDC};\widehat {BAC}\)
\(\widehat {EDC};\widehat {ACB}\)
\(\widehat {EDC};\widehat {ABC}\)
\(\widehat {EDC};\widehat {EC{\rm{D}}}\)
Cho đoạn thẳng \(AB\), trên đường trung trực \(d\) của đoạn \(AB\) lấy điểm \(M.\) So sánh \(AM\) và \(BM.\)
\(MA = MB\)
\(MA > MB\)
\(MA < MB\)
\(2.MA = MB\)
Cho tam giác $ABC$ có $M,N$ lần lượt là trung điểm của $AB,AC.$ Trên tia đối của tia $MC$ lấy $D$ sao cho $MD = MC$ . Trên tia đối của tia $NB$ lấy điểm $E$ sao cho $NE = NB.$
(I) \(\Delta AMD = \Delta BMC\)
(II) \(\Delta ANE = \Delta CNB\)
(III) $A,D,E$ thẳng hàng
(IV) $A$ là trung điểm của đoạn thẳng $DE$
Số khẳng định đúng trong các khẳng định trên là
\(0\)
\(2\)
$4$
\(3\)
Cho hai đoạn thẳng \(AB\) và \(CD\) cắt nhau tại \(O\) là trung điểm của mỗi đoạn thẳng đó. Lấy \(E;\,F\) lần lượt là điểm thuộc đoạn \(AD\) và \(BC\) sao cho \(AE = BF.\) Cho \(OE = 2cm\), tính \(EF.\)
\(4\,cm\)
\(2cm\)
$3\,cm$
\(3,5\,cm\)
Cho tam giác \(ABC\) có \(\widehat A = {90^0},M\) là trung điểm \(AC.\) Trên tia đối của tia \(MB\) lấy \(K\) sao cho \(MK = MB.\) Chọn câu đúng nhất:
\(KC \bot AC\)
\(AK//BC\)
\(AK = CB\)
Cả A, B, C đều đúng