Cho hai tam giác $ABD$ và $CDB$ có cạnh chung $BD.$ Biết $AB = DC$ và $AD = CB.$ Phát biểu nào sau đây là sai:
\(\Delta ABC = \Delta CDA\)
\(\widehat {ABC} = \widehat {CDA}\)
\(\widehat {BAC} = \widehat {DAC}\)
\(\widehat {BCA} = \widehat {DAC}\)
Cho hình dưới đây.
Chọn câu sai.
\(AD//BC\)
\(AB//CD\)
\(\Delta ABC = \Delta CDA\)
\(\Delta ABC = \Delta ADC\)
Cho tam giác $ABC$ có $AB = AC$ và $MB = MC$ (\(M \in BC\)). Chọn câu sai.
$\Delta AMC = \Delta BCM$
$AM \bot BC$
\(\widehat {BAM} = \widehat {CAM}\)
\(\Delta AMB = \Delta AMC\)
Cho tam giác $MNP$ có $MN = MP.$ Gọi $A$ là trung điểm của $NP.$ Biết \(\widehat {NMP} = {40^0}\) thì số đo góc $MPN$ là:
\({100^0}\)
\({70^0}\)
\({80^0}\)
\({90^0}\)
Cho tam giác $ABC$ có $AB < AC$ . Gọi \(E \in AC\) sao cho \(AB = CE\). Gọi $O$ là một điểm nằm ở trong tam giác sao cho $OA = OC,OB = OE.$ Khi đó:
\(\Delta AOB = \Delta CEO\)
\(\Delta AOB = \Delta COE\)
\(\widehat {AOB} = \widehat {OEC}\)
\(\widehat {ABO} = \widehat {OCE}\)
Cho \(\widehat {xOy} = {50^0}\), vẽ cung tròn tâm $O$ bán kính bằng $2cm,$ cung tròn này cắt $Ox, Oy$ lần lượt ở $A$ và $B.$ Vẽ các cung tròn tâm $A$ và tâm $B$ có bán kính $3cm,$ chúng cắt nhau tại điểm $C$ nằm trong góc $xOy.$ Tính \(\widehat {xOC}\) .
\({25^0}\)
\({50^0}\)
\({80^0}\)
\({90^0}\)