Giải mục 2 trang 9, 10, 11, 12 Chuyên đề học tập Toán 12 - Kết nối tri thức


Giả sử số vụ vi phạm Luật Giao thông trên một đoạn đường AB trong 98 buổi tối thứ Bảy được thống kê như sau: 10 tối không có vụ nào; 20 tối có 1 vụ; 23 tối có 2 vụ; 25 tối có 3 vụ; 15 tối có 4 vụ; 5 tối có 7 vụ. Hỏi trung bình có bao nhiêu vụ vi phạm Luật Giao thông trên đoạn đường B trong 98 buổi tối thứ Bảy đó?

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Lựa chọn câu để xem lời giải nhanh hơn

Hoạt động 3

Trả lời câu hỏi Hoạt động 3 trang 9 Chuyên đề học tập Toán 12 Kết nối tri thức

Giả sử số vụ vi phạm Luật Giao thông trên một đoạn đường AB trong 98 buổi tối thứ Bảy được thống kê như sau: 10 tối không có vụ nào; 20 tối có 1 vụ; 23 tối có 2 vụ; 25 tối có 3 vụ; 15 tối có 4 vụ; 5 tối có 7 vụ. Hỏi trung bình có bao nhiêu vụ vi phạm Luật Giao thông trên đoạn đường B trong 98 buổi tối thứ Bảy đó?

Phương pháp giải:

Trung bình = Tổng số vụ tai nạn / số buổi tối thứ Bảy

Lời giải chi tiết:

Có: \(0.10 + 1.20 + 2.23 + 3.25 + 4.15 + 7.5 = 236\) vụ vi phạm trong 98 buổi tối thứ Bảy

Vậy trung bình có \(\frac{{236}}{{98}} \approx 2,408\) vụ vi phạm trọng 98 buổi tối thứ Bảy

Luyện tập 2

Trả lời câu hỏi Luyện tập 2 trang 10 Chuyên đề học tập Toán 12 Kết nối tri thức

Giả sử số vụ vi phạm Luật Giao thông trên một đoạn đường vào tối thứ Bảy có thể là 0; 1; 2; 3; 4; 5 với các xác suất tương ứng là 0,1; 0,2; 0,25; 0,15 và 0,05. Hỏi trung bình có bao nhiêu vụ vi phạm Luật Giao thông trên đoạn đường đó và tối thứ Bảy?

Phương pháp giải:

Bước 1: Dựa vào dữ kiện đề bài lập bảng phân bố xác suất của biến ngẫn nhiên X

Bước 2: Tính kì vọng \(E(X)\) theo công thức 

Lời giải chi tiết:

Gọi X là số vụ vi phạm Luật Giao thông đường bộ trên đoạn đường vào tối thứ Bảy. Khi đó, X là biến ngẫu nhiên rời rạc có bảng phân bố xác suất:

Ta có:

\(\;E(X) = 0,01 + 1.0,2 + 2.0,25 + 3.0,25 + 4.0,15 + 5.0,05 = 2,3\)

Vậy trên đoạn đường vào tối thứ Bảy có trung bình 2,3 vụ vi phạm Luật Giao thông đường bộ

Vận dụng 2

Trả lời câu hỏi Vận dụng 2 trang 11 Chuyên đề học tập Toán 12 Kết nối tri thức

Tiếp tục xét tình huống mở đầu, giả sử ở vòng 1 Minh chọn câu hỏi loại II.

a) Hỏi trung bình Minh nhận được bao nhiêu điểm?

b) Ở vòng 1 Minh nên chọn loại câu hỏi nào?

Phương pháp giải:

Bước 1: Dựa vào dữ kiện đề bài lập bảng phân bố xác suất của biến ngẫn nhiên Y.

Bước 2: Tính kì vọng \(E(Y)\) theo công thức.

Bước 3: So sánh \(E(X)\) với \(E(Y)\) và đưa ra kết luận.

Lời giải chi tiết:

a) Giả sử ở vòng 1 Minh chọn câu hỏi loại II. Gọi Y là số điểm Minh nhận được.

Gọi A là biến cố “Minh trả lời đúng câu hỏi loại I” \( \Rightarrow P\left( A \right) = 0,8\)

B là biến cố “Minh trả lời đúng câu hỏi loại II”. \( \Rightarrow P\left( B \right) = 0,6\)

+ Nếu trả lời sai: Minh được 0 điểm. Cuộc chơi kết thúc tại đây

Khi đó, \(P\left( {Y = 0} \right) = P(\overline B ) = 1--P\left( B \right) = 1--0,6 = 0,4.\)

+ Nếu trả lời đúng Minh nhận 80 điểm và Minh sẽ bước vào vòng 2, bốc ngẫu nhiên một câu hỏi loại I. Nếu trả lời sai, Minh không có điểm và phải dừng cuộc chơi và số điểm với số điểm nhận được là 80 + 0 = 80 điểm. Theo giả thiết A và B là biến cố độc lập. Theo công thức nên xác suất cho hai biến cố độc lập ta có:

\(P\left( {Y = 80} \right) = P(B\overline A ) = P\left( B \right)P(\overline A ) = \left( {0,6} \right)\left( {1--0,8} \right) = 0,12\)

+ Nếu trả lời đúng Minh nhận 80 điểm. Cuộc chơi kết thúc tại đây và Minh được 20 + 80 = 100 điểm. Theo công thức nhân xác suất cho hai biến cố độc lập ta có:

\(P\left( {Y = 100} \right) = P\left( {BA} \right) = P\left( B \right)P\left( A \right) = 0,6.{\rm{ }}0,8 = 0,48\)

Bảng phân bố xác suất của Y là:

Ta có: \(E\left( Y \right) = 0.0,4 + 80.0,12 + 100.0,48 = 57,6\).

Vậy trung bình Minh được 57,6 điểm

b) Ta có \(E(X) = 54,4\), \(E(Y) = 57,6\). Ta thấy \(E(Y) > E(X)\) nên ở vòng 1, Minh nên chọn câu hỏi loại II.

Hoạt động 4

Trả lời câu hỏi Hoạt động 4 trang 11 Chuyên đề học tập Toán 12 Kết nối tri thức

Một nhà đầu tư xem xét hai phương án đầu tư. Với phương án 1 thì doanh thu một năm sẽ là 8 tỉ đồng hoặc 2 tỉ đồng với xác suất tương ứng là \(\frac{1}{3}\) và \(\frac{2}{3}\). Với phương án 2 thì doanh thu một năm sẽ là 5 tỉ đồng hoặc 3 tỉ đồng với hai xác suất bằng nhau.

a) Hãy so sánh doanh thu trung bình của phương án 1 và phương án 2.

b) Nhà đầu tư nên chọn phương án nào?

Phương pháp giải:

Bước 1: Dựa vào dữ kiện đề bài lập bảng phân bố xác suất của biến ngẫn nhiên X, Y.

Bước 2: Tính kì vọng \(E(X)\),\(E(Y)\) theo công thức.

Bước 3: So sánh \(E(X)\) với \(E(Y)\) và đưa ra kết luận.

Lời giải chi tiết:

a) Gọi X và Y tương ứng là doanh thu theo phương án 1 và phương án 2

Ta có bảng phân bố xác suất của biến ngẫu nhiên X và Y

Khi đó, \(E(X) = 8.\frac{1}{3} + 2.\frac{2}{3} = 4\); \(E(Y) = 3.\frac{1}{2} + 5.\frac{1}{2} = 4\).

Ta thấy \(E(X) = E(Y)\) nên doanh thu trung bình của hai phương án bằng nhau.

b)

Phương án 1 nếu nhà đầu tư ưa mạo hiểm

Phương án 2 nếu nhà đầu tư muốn sự an toàn

Câu hỏi

Trả lời câu hỏi trang 11 Chuyên đề học tập Toán 12 Kết nối tri thức

Trở lại HĐ4. Gọi X và Y tương ứng là doanh thu theo phương án 1 và phương án 2. Tính độ lệch chuẩn của X và Y.

Phương pháp giải:

Áp dụng công thức tính độ lệch chuẩn

Lời giải chi tiết:

\(\begin{array}{l}E(X) = 4\\V(X) = {\left( {8 - 4} \right)^2}.\frac{1}{3} + {\left( {2 - 4} \right)^2}.\frac{2}{3} = 8\\ \Rightarrow \sigma (X) = \sqrt 8  \approx 2,828.\end{array}\)

\(\begin{array}{l}E(Y) = 4\\V\left( Y \right) = {\left( {5 - 4} \right)^2}.\frac{1}{2} + {\left( {3 - 4} \right)^2}.\frac{1}{2} = 1\\ \Rightarrow \sigma \left( Y \right) = 1\end{array}\)

Luyện tập 3

Trả lời câu hỏi Luyện tập 3 trang 12 Chuyên đề học tập Toán 12 Kết nối tri thức

Cho biến ngẫu nhiên rời rạc X với bảng phân bố xác suất như sau:

a) Tính  \(V(X)\) và \(\sigma (X)\) theo định nghĩa

b) Tính \(V(X)\) theo công thức (2).

Phương pháp giải:

Áp dụng các công thức để tính.

Lời giải chi tiết:

a)

\(E(X) = 0.0,16 + 1.0,18 + 2.0,25 + 3.0,28 + 4.0,13 = 2,04.\)

\(\begin{array}{l}V\left( X \right) = {\left( {0--2,04} \right)^2}.0,16 + {\left( {1--2,04} \right)^2}.0,18 + {\left( {2--2,04} \right)^2}.0,25 + {\left( {3--2,04} \right)^2}.0,28\\{\rm{             }} + {\left( {4--2,04} \right)^2}.0,13 = 1,6184.\\ \Rightarrow \sigma \left( X \right) = \sqrt {1,6184}  \approx 1,2722\end{array}\)

b) \(V\left( X \right) = {0^2}.0,16 + {1^2}.0,18 + {2^2}.0,25 + {3^2}.0,28 + {4^2}.0,13--{\left( {2,04} \right)^2} = 1,6184.\)


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 1.1 trang 13 Chuyên đề học tập Toán 12 - Kết nối tri thức

    Giả sử số ca cấp cứu ở một bệnh viện vào tối thứ Bảy là một biến ngẫu nhiên rời rạc X có bảng phân bố xác suất như sau: a) Tính xác suất để xảy ra ít nhất một ca cấp cứu ở bệnh viện đó vào tối thứ Bảy. b) Biết rằng nếu có hơn 3 ca cấp cứu thì bệnh viện phải tăng cường thêm bác sĩ trực. Tính xác suất phải tăng cường bác sĩ trực vào tối thứ Bảy ở bệnh viện đó. c) Tính (Eleft( X right),{rm{ }}Vleft( X right))và (sigma left( X right)).

  • Giải bài 1.2 trang 13 Chuyên đề học tập Toán 12 - Kết nối tri thức

    Số cuộc điện thoại gọi đến một trung tâm cứu hộ trong khoảng thời gian từ 12 giờ đến 13 giờ là một biến ngẫu nhiên rời rạc X có bảng phân bố xác suất như sau: a) Tính xác suất để xảy ra ít nhất 2 cuộc gọi đến trung tâm cứu hộ đó. b) Tính xác suất để xảy ra nhiều nhất 3 cuộc gọi đến trung tâm cứu hộ đó. c) Tính (Eleft( X right),{rm{ }}Vleft( X right))và (sigma left( X right)).

  • Giải bài 1.3 trang 13 Chuyên đề học tập Toán 12 - Kết nối tri thức

    Một túi gồm các tấm thẻ giống hệt nhau chỉ khác màu, trong đó có 10 tấm thẻ màu đỏ và 6 tấm thẻ màu xanh. Rút ngẫu nhiên đồng thời ra 3 tấm thẻ từ trong túi. a) Gọi X là số thẻ đỏ trong ba thẻ rút ra. Lập bảng phân bố xác suất của X. Tính (Eleft( X right).) b) Giả sử rút mỗi tấm thẻ màu đỏ được 5 điểm và rút mỗi tấm thẻ màu xanh được 8 điểm. Gọi Y là số điểm thu được sau khi rút 3 tấm thẻ từ trong túi. Lập bảng phân bố xác suất của Y.

  • Giải bài 1.4 trang 13 Chuyên đề học tập Toán 12 - Kết nối tri thức

    Hai xạ thủ An và Bình tập bắn một cách độc lập với nhau. Mỗi người thực hiện hai phát bắn một cách độc lập. Xác suất bắn trúng bia của An và của Bình trong mỗi phát bắn tương ứng là 0.4 và 0,5. Gọi X là số phát bắn trúng bia của An, Y là số phát bắn trúng bia của Bình. a) Lập bảng phân bố xác suất của X, Y. b) Tính (Eleft( X right),Eleft( Y right),Vleft( X right),V(Y).)

  • Giải bài 1.5 trang 13 Chuyên đề học tập Toán 12 - Kết nối tri thức

    Trong một chiếc hộp có 10 quả cầu có kích thước và khối lượng giống nhau, trong đó có 4 quả ghi số 1; 3 quả ghi số 2; 2 quả ghi số 3 và 1 quả ghi số 4. Lấy ngẫu nhiên đồng thời hai quả cầu rồi cộng hai số trên hai quả cầu với nhau. Gọi X là kết quả thu được. Lập bảng phân bố xác suất của X.

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí