 Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
                                                
                            Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
                         Bài 9. Tích của một vecto với một số Toán 10 Kết nối tr..
                                                        Bài 9. Tích của một vecto với một số Toán 10 Kết nối tr..
                                                    Giải mục 1 trang 55, 56 SGK Toán 10 tập 1 - Kết nối tri thức>
1a và a có bằng nhau hay không? Trên một trục số, gọi O, A, M, N tương ứng biểu thị các số 0, 1, . Hãy nêu mối quan hệ về hướng và độ dài -a và -1a có mối quan hệ gì? Cho đường thẳng d đi qua hai điểm phân biệt A và B. Những khẳng định nào sau đây là đúng?
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
HĐ1
Trả lời câu hỏi Hoạt động 1 trang 55 SGK Toán 10 Kết nối tri thức
Cho vecto \(\overrightarrow {AB} = \overrightarrow a \). Hãy xác định điểm C sao cho \(\overrightarrow {BC} = \overrightarrow a \).
a) Tìm mối quan hệ giữa \(\overrightarrow {AC} \) và \(\overrightarrow a + \overrightarrow a \).
b) Vecto \(\overrightarrow a + \overrightarrow a \) có mối quan hệ như thế nào về hướng và độ dài đối với vecto \(\overrightarrow a \).
Phương pháp giải:
Hai vecto bằng nhau nếu chúng có cùng độ dài và cùng hướng.
Lời giải chi tiết:
Xác định điểm C:
Trên tia AB lấy điểm C sao cho BC = a và B nằm giữa A, C.

a) Vì \(\overrightarrow {AB} = \overrightarrow a = \overrightarrow {BC} \) nên A, B, C thẳng hàng và B là trung điểm của AC.
Vậy \(\overrightarrow a + \overrightarrow a \) và \(\overrightarrow {AC} \) cùng hướng, \(\left| {\overrightarrow a + \overrightarrow a } \right| = 2.\left| {\overrightarrow {AC} } \right|\).
b) Ta có: \(\overrightarrow a + \overrightarrow a \) và \(\overrightarrow {AB} \) cùng hướng, \(\left| {\overrightarrow a + \overrightarrow a } \right| = 2.\left| {\overrightarrow {AB} } \right|\).
Mà \(\overrightarrow {AB} = \overrightarrow a \) nên: \(\overrightarrow a + \overrightarrow a \) và \(\overrightarrow a \) cùng hướng, \(\left| {\overrightarrow a + \overrightarrow a } \right| = 2.\left| {\overrightarrow a } \right|\).
CH1
Trả lời câu hỏi Câu hỏi trang 55 SGK Toán 10 Kết nối tri thức
\(1\overrightarrow a \) và \(\overrightarrow a \) có bằng nhau hay không?
Phương pháp giải:
Hai vecto bằng nhau nếu chúng có cùng độ dài và cùng hướng.
Lời giải chi tiết:
Ta có: Vecto \(1\overrightarrow a \) cùng hướng với vecto \(\overrightarrow a \) và \(\left| {1\overrightarrow a } \right| = \left| {\overrightarrow a } \right|\).
Vậy hai vecto \(1\overrightarrow a \) và \(\overrightarrow a \) bằng nhau.
HĐ2
Trả lời câu hỏi Hoạt động 2 trang 56 SGK Toán 10 Kết nối tri thức
Trên một trục số, gọi O, A, M, N tương ứng biểu diễn các số \(0;\;1;\;\sqrt 2 ;\; - \sqrt 2 \). Hãy nêu mối quan hệ về hướng và độ dài của mỗi vecto \(\overrightarrow {OM} ,\;\overrightarrow {ON} \) với vecto \(\overrightarrow a = \overrightarrow {OA} \). Viết đẳng thức thể hiện mối quan hệ giữa hai vecto \(\overrightarrow {OM} \) và \(\overrightarrow {OA} \).

Phương pháp giải:
Vecto \(k\;\overrightarrow a \) (với \(k > 0,\;\overrightarrow a \ne \overrightarrow 0 \)) là vecto cùng hướng với vecto \(\overrightarrow a \) và có độ đài bằng \(k\;\left| {\overrightarrow a } \right|\).
Lời giải chi tiết:
Dễ thấy:
Vecto \(\overrightarrow {OM} \) và \(\overrightarrow {OA} \) có cùng giá nên chúng cùng phương.
Mà vecto \(\overrightarrow {OM} \) và \(\overrightarrow {OA} \) cùng nằm trên tia OM nên chúng cùng chiều.
Vậy vecto \(\overrightarrow {OM} \) và \(\overrightarrow {OA} \) cùng hướng.
Ngoài ra, \(\left| {\overrightarrow {OM} } \right| = OM = \sqrt 2 \) và \(\left| {\overrightarrow {OA} } \right| = OA = 1\)
\( \Rightarrow \left| {\overrightarrow {OM} } \right| = \sqrt 2 .\left| {\overrightarrow {OA} } \right|\)
Ta kết luận \(\overrightarrow {OM} = \sqrt 2 .\overrightarrow {OA} \).
Dễ thấy:
Vecto \(\overrightarrow {ON} \) và \(\overrightarrow {OA} \) có cùng giá nên chúng cùng phương.
Mà vecto \(\overrightarrow {ON} \) và \(\overrightarrow {OA} \) thuộc hai tia đối nhau nên chúng ngược chiều.
Vậy vecto \(\overrightarrow {ON} \) và \(\overrightarrow {OA} \) ngược hướng.
Ngoài ra, \(\left| {\overrightarrow {ON} } \right| = ON = \sqrt 2 \) và \(\left| {\overrightarrow {OA} } \right| = OA = 1\).
\( \Rightarrow \left| {\overrightarrow {ON} } \right| = \sqrt 2 .\left| {\overrightarrow {OA} } \right|\).
Ta kết luận \(\overrightarrow {ON} = -\sqrt 2 .\overrightarrow {OA} \).
CH2
Trả lời câu hỏi Câu hỏi trang 56 SGK Toán 10 Kết nối tri thức
\( - \;\overrightarrow a \) và \( - 1\;\overrightarrow a \) có mối quan hệ gì?
Phương pháp giải:
Vecto \(k\;\overrightarrow a \) (với \(k < 0,\;\overrightarrow a \ne \overrightarrow 0 \)) là vecto ngược hướng với vecto \(\overrightarrow a \) và có độ đài bằng \(\left| k \right|\;\left| {\overrightarrow a } \right|\).
Lời giải chi tiết:
Ta có:
Vecto \( - \overrightarrow a \) là vecto đối của vecto \(\overrightarrow a \).
\( \Rightarrow - \overrightarrow a \) ngược hướng với vecto \(\overrightarrow a \) và \(\left| { - \overrightarrow a } \right| = \left| {\overrightarrow a } \right|\).
Lại có:
Vecto \( - 1\overrightarrow a \) là vecto ngược hướng với vecto \(\overrightarrow a \) và có độ đài bằng \(\left| { - 1} \right|\left| {\overrightarrow a } \right| = \left| {\overrightarrow a } \right|\).
\( \Rightarrow - \overrightarrow a \) và \( - 1\overrightarrow a \) cùng hướng và có độ dài bằng nhau (bằng vecto\(\overrightarrow a \)).
Hay \( - \overrightarrow a = - 1\overrightarrow a \).
LT1
Trả lời câu hỏi Luyện tập 1 trang 56 SGK Toán 10 Kết nối tri thức
Cho đường thẳng d đi qua hai điểm phân biệt A và B (H.4.25). Những khẳng định nào sau đây là đúng?
a) Điểm M thuộc đường thẳng d khi và chỉ khi tồn tại số t để \(\overrightarrow {AM} = t.\overrightarrow {AB} \).
b) Với điểm M bất kì, ta luôn có \(\overrightarrow {AM} = \frac{{AM}}{{AB}}.\overrightarrow {AB} \).
c) Điểm M thuộc tia đối của tia AB khi và chỉ khi tồn tại số \(t \le 0\) để \(\overrightarrow {AM} = t.\overrightarrow {AB} \).

Phương pháp giải:
\(\overrightarrow a \) và \(\overrightarrow b \;\left( {\overrightarrow b \ne \overrightarrow 0 } \right)\) cùng phương khi và chỉ khi tồn tại số k để \(\overrightarrow a = k.\overrightarrow b \).
Nếu \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng thì \(k = \frac{{|\overrightarrow a |}}{{|\overrightarrow b |}}\).
Nếu \(\overrightarrow a \) và \(\overrightarrow b \) ngược hướng thì \(k = - \frac{{|\overrightarrow a |}}{{|\overrightarrow b |}}\).
Lời giải chi tiết:
a) Điểm M thuộc đường thẳng d khi và chỉ khi hai vecto \(\overrightarrow {AM} \) và \(\overrightarrow {AB} \) cùng phương (cùng giá d).
Khi và chỉ khi tồn tại số t để \(\overrightarrow {AM} = t.\overrightarrow {AB} \).
Vậy khẳng định a) đúng.
 
b) Với điểm M bất kì, ta luôn có \(\overrightarrow {AM} = \frac{{AM}}{{AB}}.\overrightarrow {AB} \).
Sai vì \(\overrightarrow {AM} = \frac{{AM}}{{AB}}.\overrightarrow {AB} \) khi và chỉ khi \(\overrightarrow {AM} \) và \(\overrightarrow {AB} \) cùng hướng.
 
c) Điểm M thuộc tia đối của tia AB, tức là A nằm giữa M và B.
Khi và chỉ khi hai vecto \(\overrightarrow {AM} \) và \(\overrightarrow {AB} \) ngược hướng khi và chỉ khi tồn tại số \(t < 0\) để \(\overrightarrow {AM} = t.\overrightarrow {AB} \).
Vậy khẳng định c) sai.

 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Giải mục 2 trang 57, 58, 59 SGK Toán 10 tập 1 - Kết nối tri thức
- Giải bài 4.11 trang 58 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 4.12 trang 58 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 4.13 trang 58 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 4.14 trang 58 SGK Toán 10 tập 1 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            