Giải câu hỏi trắc nghiệm trang 5, 6 vở thực hành Toán 9 tập 2>
Điểm nào sau đây thuộc đồ thị hàm số (y = frac{1}{3}{x^2})? A. (left( {3;1} right)). B. (left( { - 3;1} right)). C. (left( {3; - 3} right)). D. (left( { - 3;3} right)).
Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - KHTN - Lịch sử và Địa lí
Chọn phương án đúng trong mỗi câu sau:
Câu 1
Trả lời Câu 1 trang 5 Vở thực hành Toán 9
Điểm nào sau đây thuộc đồ thị hàm số \(y = \frac{1}{3}{x^2}\)?
A. \(\left( {3;1} \right)\).
B. \(\left( { - 3;1} \right)\).
C. \(\left( {3; - 3} \right)\).
D. \(\left( { - 3;3} \right)\).
Phương pháp giải:
Thay hoành độ của các điểm vào hàm số \(y = \frac{1}{3}{x^2}\) để tìm tung độ. Từ đó tìm được điểm thuộc đồ thị.
Lời giải chi tiết:
Thay \(x = 3\) vào hàm số \(y = \frac{1}{3}{x^2}\) ta có: \(y = \frac{1}{3}{.3^2} = 3\). Do đó, điểm (3; 3) thuộc đồ thị hàm số \(y = \frac{1}{3}{x^2}\).
Thay \(x = - 3\) vào hàm số \(y = \frac{1}{3}{x^2}\) ta có: \(y = \frac{1}{3}.{\left( { - 3} \right)^2} = 3\). Do đó, điểm (-3; 3) thuộc đồ thị hàm số \(y = \frac{1}{3}{x^2}\).
Chọn D
Câu 2
Trả lời Câu 2 trang 5 Vở thực hành Toán 9
Điểm A(-2; -2) thuộc đồ thị hàm số \(y = a{x^2}\) khi
A. \(a = - 1\).
B. \(a = 1\).
C. \(a = - \frac{1}{2}\).
D. \(a = \frac{1}{2}\).
Phương pháp giải:
Thay \(x = - 2;y = - 2\) vào hàm số \(y = a{x^2}\), giải phương trình tìm được a.
Lời giải chi tiết:
Thay \(x = - 2;y = - 2\) vào hàm số \(y = a{x^2}\) ta có: \( - 2 = a.{\left( { - 2} \right)^2}\), suy ra \(a = \frac{{ - 1}}{2}\). Do đó, \(a = \frac{{ - 1}}{2}\) thì điểm A(-2; -2) thuộc đồ thị hàm số \(y = a{x^2}\).
Chọn C
Câu 3
Trả lời Câu 3 trang 5 Vở thực hành Toán 9
Cặp điểm nằm trên đồ thị \(y = 2{x^2}\) có tung độ bằng 4 là
A. \(\left( {2;4} \right)\) và \(\left( { - 2;4} \right)\).
B. \(\left( {4;2} \right)\) và \(\left( {4; - 2} \right)\).
C. \(\left( {\sqrt 2 ;4} \right)\) và \(\left( { - \sqrt 2 ;4} \right)\).
D. \(\left( {4;\sqrt 2 } \right)\) và \(\left( {4; - \sqrt 2 } \right)\).
Phương pháp giải:
Thay \(y = 4\) vào hàm số \(y = 2{x^2}\) để tìm x, từ đó tìm được tọa độ điểm thuộc đồ thị hàm số.
Lời giải chi tiết:
Thay \(y = 4\) vào hàm số \(y = 2{x^2}\) ta có: \(4 = 2.{x^2}\), suy ra \({x^2} = 2\) nên \(x = \pm \sqrt 2 \).
Vậy các cặp điểm \(\left( {\sqrt 2 ;4} \right)\) và \(\left( { - \sqrt 2 ;4} \right)\) nằm trên đồ thị \(y = 2{x^2}\) có tung độ bằng 4.
Chọn C
Câu 4
Trả lời Câu 4 trang 6 Vở thực hành Toán 9
Hình bên là đồ thị của hàm số nào?
A. \(y = \frac{1}{4}{x^2}\).
B. \(y = \frac{1}{2}{x^2}\).
C. \(y = {x^2}\).
D. \(y = 2{x^2}\).
Phương pháp giải:
Dựa vào đồ thị ta thấy những điểm (0; 0), (2; 2); (-2; 2) đều thuộc đồ thị hàm số \(y = \frac{1}{2}{x^2}\).
Lời giải chi tiết:
Đồ thị hàm số trên đi qua các điểm (0; 0), (2; 2); (-2; 2). Do đó, đồ thị hàm số cần tìm là \(y = \frac{1}{2}{x^2}\).
Chọn B
Câu 5
Trả lời Câu 5 trang 6 Vở thực hành Toán 9
Điểm M(-2; -3) nằm trên đồ thị của hàm số nào dưới đây?
A. \(y = - \frac{3}{4}{x^2}\).
B. \(y = - \frac{3}{2}{x^2}\).
C. \(y = \frac{3}{4}{x^2}\).
D. \(y = \frac{3}{2}{x^2}\).
Phương pháp giải:
Thay \(x = - 2\) vào hàm số \(y = - \frac{3}{4}{x^2}\), tìm được tung độ nên tìm được điểm nằm trên đồ thị hàm số \(y = - \frac{3}{4}{x^2}\).
Lời giải chi tiết:
Thay \(x = - 2\) và hàm số \(y = - \frac{3}{4}{x^2}\) ta có: \(y = - \frac{3}{4}.{\left( { - 2} \right)^2} = - 3\). Do đó, điểm M(-2; -3) nằm trên đồ thị của hàm số \(y = - \frac{3}{4}{x^2}\)
Chọn A
- Giải bài 1 trang 6 vở thực hành Toán 9 tập 2
- Giải bài 2 trang 6 vở thực hành Toán 9 tập 2
- Giải bài 3 trang 6 vở thực hành Toán 9 tập 2
- Giải bài 4 trang 7 vở thực hành Toán 9 tập 2
- Giải bài 5 trang 8 vở thực hành Toán 9 tập 2
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay