Giải bài tập 5.23 trang 53 SGK Toán 12 tập 2 - Kết nối tri thức>
Kim tự tháp Kheops ở Ai Cập có dạng hình chóp S. ABCD, có đáy là hình vuông với cạnh dài 230m, các cạnh bên bằng nhau và dài 219m (theo britannica.com) (H.5.38). Tính góc giữa hai mặt phẳng (SAB) và (SBC).
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Kim tự tháp Kheops ở Ai Cập có dạng hình chóp S. ABCD, có đáy là hình vuông với cạnh dài 230m, các cạnh bên bằng nhau và dài 219m (theo britannica.com) (H.5.38). Tính góc giữa hai mặt phẳng (SAB) và (SBC).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về góc giữa hai mặt phẳng để tính: Trong không gian Oxyz, cho hai mặt phẳng (P), (Q) tương ứng có các vectơ pháp tuyến là \(\overrightarrow n = \left( {A;B;C} \right),\overrightarrow {n'} = \left( {A';B';C'} \right)\). Khi đó, góc giữa (P) và (Q), kí hiệu là ((P), (Q)) được tính theo công thức:
\(\cos \left( {\left( P \right),\left( Q \right)} \right) = \left| {\cos \left( {\overrightarrow n ,\overrightarrow {n'} } \right)} \right| = \frac{{\left| {AA' + BB' + CC'} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} .\sqrt {A{'^2} + B{'^2} + C{'^2}} }}\)
Lời giải chi tiết
Gọi O là giao điểm của AC và BD, khi đó ta tính được \(OA = OB = OC = OD = 115\sqrt 2 \)
Vì \(SA = SB = SC = SD\) nên tam giác SAC và SBD là các tam giác cân tại S. Do đó, SO vừa là đường trung tuyến vừa là đường cao của các tam giác SAC và SBD. Do đó, \(SO \bot AC,SO \bot BD\) nên \(SO \bot \left( {ABCD} \right)\).
Tam giác SOA vuông tại O nên \(SO = \sqrt {S{A^2} - A{O^2}} = \sqrt {{{219}^2} - {{\left( {115\sqrt 2 } \right)}^2}} = 7\sqrt {439} \)
Chọn hệ trục tọa độ Oxyz có gốc tọa độ trùng với O như hình vẽ.
Khi đó, \(S\left( {0;0;7\sqrt {439} } \right),A\left( {115\sqrt 2 ;0;0} \right);B\left( {0;115\sqrt 2 ;0} \right),C\left( { - 115\sqrt 2 ;0;0} \right)\)
Suy ra: \(\overrightarrow {SA} \left( {115\sqrt 2 ;0; - 7\sqrt {439} } \right),\overrightarrow {AB} \left( { - 115\sqrt 2 ;115\sqrt 2 ;0} \right) \Rightarrow \overrightarrow m = \frac{1}{{115\sqrt 2 }}\overrightarrow {AB} = \left( { - 1;1;0} \right)\),
\(,\overrightarrow {SB} \left( {0;115\sqrt 2 ; - 7\sqrt {439} } \right)\), \(\overrightarrow {BC} \left( { - 115\sqrt 2 ; - 115\sqrt 2 ;0} \right) \Rightarrow \overrightarrow v = \frac{1}{{ - 115\sqrt 2 }}\overrightarrow {BC} = \left( {1;1;0} \right)\)
\(\left[ {\overrightarrow {SA} ,\overrightarrow m } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&{ - 7\sqrt {439} }\\1&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 7\sqrt {439} }&{115\sqrt 2 }\\0&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{115\sqrt 2 }&0\\{ - 1}&1\end{array}} \right|} \right)\)\( = \left( {7\sqrt {439} ;7\sqrt {439} ;115\sqrt 2 } \right)\)
Mặt phẳng (SAB) nhận \(\overrightarrow {{n_1}} = \left[ {\overrightarrow {SA} ,\overrightarrow m } \right] = \left( {7\sqrt {439} ;7\sqrt {439} ;115\sqrt 2 } \right)\) làm vectơ pháp tuyến.
\(\left[ {\overrightarrow {SB} ,\overrightarrow v } \right] = \left( {\left| {\begin{array}{*{20}{c}}{115\sqrt 2 }&{ - 7\sqrt {439} }\\1&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 7\sqrt {439} }&0\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{115\sqrt 2 }\\1&1\end{array}} \right|} \right)\)\( = \left( {7\sqrt {439} ; - 7\sqrt {439} ; - 115\sqrt 2 } \right)\)
Mặt phẳng (SBC) nhận \(\overrightarrow {{n_2}} = \left[ {\overrightarrow {SB} ,\overrightarrow v } \right] = \left( {7\sqrt {439} ; - 7\sqrt {439} ; - 115\sqrt 2 } \right)\) làm vectơ pháp tuyến.
Ta có: \(\left( {\left( {SAB} \right),\left( {SBC} \right)} \right) = \left| {\cos \left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right)} \right|\)
\( = \frac{{\left| {{{\left( {7\sqrt {439} } \right)}^2} - {{\left( {7\sqrt {439} } \right)}^2} - {{\left( {115\sqrt 2 } \right)}^2}} \right|}}{{\sqrt {{{\left( {7\sqrt {439} } \right)}^2} + {{\left( {7\sqrt {439} } \right)}^2} + {{\left( {115\sqrt 2 } \right)}^2}} .\sqrt {{{\left( {7\sqrt {439} } \right)}^2} + {{\left( { - 7\sqrt {439} } \right)}^2} + {{\left( { - 115\sqrt 2 } \right)}^2}} }}\)
\( = \frac{{{{\left( {115\sqrt 2 } \right)}^2}}}{{69\;472}} = \frac{{13225}}{{34736}} \Rightarrow \left( {\left( {SAB} \right),\left( {SBC} \right)} \right) \approx 67,{6^o}\)
Vậy góc giữa hai mặt phẳng (SAB) và (SBC) bằng \(67,{6^o}\).
- Giải bài tập 5.24 trang 53 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 5.22 trang 53 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 5.21 trang 53 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 5.20 trang 53 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải mục 3 trang 52,53 SGK Toán 12 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức