Giải bài 9.32 trang 57 sách bài tập toán 9 - Kết nối tri thức tập 2


Cho tam giác nhọn ABC có các đường cao BE, CF. Một đường tròn (O) đi qua hai điểm E, F và cắt các tia đối của hai tia BF, CE lần lượt tại X và Y. Chứng minh rằng XY song song với BC.

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Cho tam giác nhọn ABC có các đường cao BE, CF. Một đường tròn (O) đi qua hai điểm E, F và cắt các tia đối của hai tia BF, CE lần lượt tại X và Y. Chứng minh rằng XY song song với BC.

Phương pháp giải - Xem chi tiết

+ Chứng minh bốn điểm B, E, F, C cùng nằm trên đường tròn có tâm là trung điểm của BC, đường kính BC, suy ra tứ giác BFEC là tứ giác nội tiếp.

+ Chứng minh \(\widehat {FBC} = {180^o} - \widehat {FEC} = {180^o} - \widehat {FEY} = \widehat {FXY}\), suy ra XY song song với BC.

Lời giải chi tiết

Vì các tam giác vuông BEC, BFC có chung cạnh huyền BC nên bốn điểm B, E, F, C cùng nằm trên đường tròn có tâm là trung điểm của BC và bán kính \(\frac{{BC}}{2}\). Do đó, tứ giác BFEC là tứ giác nội tiếp.

Vì tổng các góc đối nhau của các tứ giác nội tiếp BFEC và XFEY bằng 180 độ nên:

\(\widehat {FBC} = {180^o} - \widehat {FEC} = {180^o} - \widehat {FEY} = \widehat {FXY}\)

Mà hai góc này ở vị trí đồng vị nên XY song song với BC.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí

Bài viết mới nhất

Sự tích hoa sen - Truyện cổ tích

Sự tích hoa dạ lan hương - Truyện cổ tích

Sự tích cây huyết dụ - Truyện cổ tích

Sự tích quả dưa bở - Truyện cổ tích

Sự tích cá chép hóa rồng - Truyện cổ tích

3+ Dẫn chứng về Tư duy đổi mới hay nhất

3+ Dẫn chứng về Hiện tượng fan cuồng hay nhất

3+ Dẫn chứng về Tha thứ hay nhất

3+ Dẫn chứng về Tự do hay nhất

3+ Dẫn chứng về Giữ lời hứa hay nhất