Giải bài 9 trang 9 sách bài tập toán 11 - Chân trời sáng tạo tập 2>
Cho (a > 0,b > 0). Rút gọn các biểu thức sau:
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Cho \(a > 0,b > 0\). Rút gọn các biểu thức sau:
a) \(\left( {{a^{\frac{1}{2}}} + {b^{ - \frac{1}{2}}}} \right)\left( {{a^{\frac{1}{2}}} - {b^{ - \frac{1}{2}}}} \right)\);
b) \(\left( {{a^{\frac{1}{3}}} + {b^{\frac{1}{3}}}} \right)\left( {{a^{\frac{2}{3}}} - {a^{\frac{1}{3}}}{b^{\frac{1}{3}}} + {b^{\frac{2}{3}}}} \right)\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về phép tính lũy thừa: \({\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha \beta }}\), \({a^{ - n}} = \frac{1}{{{a^n}}}\) với \(a \ne 0\)
Lời giải chi tiết
a) \(\left( {{a^{\frac{1}{2}}} + {b^{ - \frac{1}{2}}}} \right)\left( {{a^{\frac{1}{2}}} - {b^{ - \frac{1}{2}}}} \right) = {\left( {{a^{\frac{1}{2}}}} \right)^2} - {\left( {{b^{ - \frac{1}{2}}}} \right)^2} = a - {b^{ - 1}} = a - \frac{1}{b}\);
b) \(\left( {{a^{\frac{1}{3}}} + {b^{\frac{1}{3}}}} \right)\left( {{a^{\frac{2}{3}}} - {a^{\frac{1}{3}}}{b^{\frac{1}{3}}} + {b^{\frac{2}{3}}}} \right) = {\left( {{a^{\frac{1}{3}}}} \right)^3} + {\left( {{b^{\frac{1}{3}}}} \right)^3} = a + b\).
- Giải bài 10 trang 9 sách bài tập toán 11 - Chân trời sáng tạo tập 2
- Giải bài 11 trang 9 sách bài tập toán 11 - Chân trời sáng tạo tập 2
- Giải bài 12 trang 9 sách bài tập toán 11 - Chân trời sáng tạo tập 2
- Giải bài 13 trang 9 sách bài tập toán 11 - Chân trời sáng tạo tập 2
- Giải bài 8 trang 9 sách bài tập toán 11 - Chân trời sáng tạo tập 2
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 5 trang 162 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 4 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 3 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 2 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 1 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 5 trang 162 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 4 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 3 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 2 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 1 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1