

Giải bài 8 trang 88 vở thực hành Toán 9>
Giải tam giác ABC vuông tại A, biết a) (BC = 20,widehat C = {40^o}); b) (AC = 82,widehat B = {55^o}); c) (BC = 32,AC = 20). (Kết quả về cạnh làm tròn đến chữ số thập phân thứ nhất, kết quả về góc làm tròn đến độ).
Tổng hợp Đề thi vào 10 có đáp án và lời giải
Toán - Văn - Anh
Đề bài
Giải tam giác ABC vuông tại A, biết
a) \(BC = 20,\widehat C = {40^o}\);
b) \(AC = 82,\widehat B = {55^o}\);
c) \(BC = 32,AC = 20\).
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ nhất, kết quả về góc làm tròn đến độ).
Phương pháp giải - Xem chi tiết
a) Ta có: \(\widehat B = {90^o} - \widehat C\); \(AC = BC.\cos C\); \(AB = BC.\sin C\).
b) Ta có: \(\widehat C = {90^o} - \widehat B\); \(AB = AC.\tan C\); \(B{C^2} = A{B^2} + A{C^2}\) nên tính được BC.
c) Ta có: \(A{B^2} = B{C^2} - A{B^2}\) tính được AB; \(\sin B = \frac{{AC}}{{BC}}\) tính được góc B; \(\widehat C = {90^o} - \widehat B\)
Lời giải chi tiết
a) (H.4.31)
Ta có: \(\widehat B = {90^o} - \widehat C = {50^o}\),
\(AC = BC.\cos C = 20.\cos {40^o} \approx 15,3\), \(AB = BC.\sin C = 20.\sin {40^o} \approx 12,9\)
b) (H.4.32)
Ta có: \(\widehat C = {90^o} - \widehat B = {35^o}\).
\(AB = AC.\tan C = 82.\tan {35^o} \approx 57,4\)
\(B{C^2} = A{B^2} + A{C^2} = {82^2} + {57,4^2}\), suy ra \(BC = 100,1\)
c) (H.4.33)
Ta có: \(A{B^2} = B{C^2} - A{B^2} = {32^2} - {20^2}\), suy ra \(AB \approx 25,0\)
\(\sin B = \frac{{AC}}{{BC}} = \frac{{20}}{{32}} = 0,625\), suy ra \(\widehat B \approx {39^o}\)
Từ đó suy ra \(\widehat C = {90^o} - \widehat B = {51^o}\)


- Giải bài 7 trang 88 vở thực hành Toán 9
- Giải bài 9 trang 89 vở thực hành Toán 9
- Giải bài 6 trang 87 vở thực hành Toán 9
- Giải bài 5 trang 87 vở thực hành Toán 9
- Giải bài 4 trang 86 vở thực hành Toán 9
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay