Bài 8 trang 6 SBT toán 9 tập 1


Giải bài 8 trang 6 sách bài tập toán 9. Chứng minh ...1 + 2 + 3....

Đề bài

Chứng minh:

\(\eqalign{
& \sqrt {{1^3} + {2^3}} = 1 + 2; \cr 
& \sqrt {{1^3} + {2^3} + {3^3}} = 1 + 2 + 3; \cr 
& \sqrt {{1^3} + {2^3} + {3^3} + {4^3}} = 1 + 2 + 3 + 4. \cr} \)

Viết tiếp một số đẳng thức tương tự.

Phương pháp giải - Xem chi tiết

Tính giá trị của vế trái và giá trị vế phải của mỗi đẳng thức. So sánh hai giá trị để chứng mình đẳng thức đúng.

Từ các đẳng thức đã chứng minh ta tìm quy luật để suy ra đẳng thức tương tự.

Lời giải chi tiết

+ Ta có : \(\sqrt {{1^3} + {2^3}}  = \sqrt {1 + 8}  = \sqrt 9  = 3\)

Và \(1 + 2 = 3\) 

Vậy \(\sqrt {{1^3} + {2^3}}  = 1 + 2\)

+ Ta có : 

\(\eqalign{
& \sqrt {{1^3} + {2^3} + {3^3}} = \sqrt {1 + 8 + 27} \cr 
& = \sqrt {36} = 6 \cr} \)

Vậy \(\sqrt {{1^3} + {2^3} + {3^3}}  = 1 + 2 + 3\)

+ Ta có : 

\(\eqalign{
& \sqrt {{1^3} + {2^3} + {3^3} + {4^3}} \cr 
& = \sqrt {1 + 8 + 27 + 64} \cr 
& = \sqrt {100} = 10 \cr} \)

Và \(1 + 2 + 3 + 4 = 10\)

Vậy 

\(\eqalign{
& \sqrt {{1^3} + {2^3} + {3^3} + {4^3}} \cr 
& = 1 + 2 + 3 + 4 \cr} \)

Một số đẳng thức tương tự:

\(\sqrt {{1^3} + {2^3} + {3^3} + {4^3} + {5^3}} \)\(= 1 + 2 + 3 + 4 + 5 \)

\(\sqrt {{1^3} + {2^3} + {3^3} + {4^3} + {5^3} +{6^3}}\)

\(= 1 + 2 + 3 + 4 + 5 +6 \). 

Loigiaihay.com


Bình chọn:
4.5 trên 13 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí