Giải bài 6.27 trang 28 SGK Toán 10 – Kết nối tri thức>
Bất phương trình
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Bất phương trình \({x^2} - 2mx + 4 > 0\) nghiệm đúng với mọi \(x \in \mathbb{R}\) khi
A. \(m = - 1.\)
B. \(m = - 2.\)
C. \(m = 2.\)
D. \(m > 2.\)
Phương pháp giải - Xem chi tiết
- Tính \(\Delta = {b^2} - 4ac.\)
- Giải bất phương trình \(\Delta < 0\) để bất phương trình có nghiệm đúng với mọi \(x \in \mathbb{R}\)
Lời giải chi tiết
Để \({x^2} - 2mx + 4 > 0\) nghiệm đúng với mọi \(x \in \mathbb{R}\)
\(\begin{array}{l} \Leftrightarrow \,\,\Delta ' < 0\\ \Leftrightarrow \,\,{\left( { - m} \right)^2} - 4 < 0\\ \Leftrightarrow \,\,{m^2} - 4 < 0\end{array}\)
Ta có \(f\left( m \right) = {m^2} - 4\) có hai nghiệm phân biệt \({m_1} = - 2\) và \({m_2} = 2.\)
Mặt khác: \(a = 1 > 0\) nên ta có bảng xét dấu sau:
Vậy tập nghiệm của bất phương trình là: \(S = \left( { - 2;2} \right).\)
Chọn A.
- Giải bài 6.28 trang 28 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.29 trang 28 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.30 trang 28 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.31 trang 28 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.32 trang 28 SGK Toán 10 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay