Giải bài 5 trang 29 Chuyên đề học tập Toán 11 Chân trời sáng tạo>
Cho hai tam giác vuông cân OAB và OA’B’ có chung đỉnh O sao cho O nằm trên đoạn AB’ và nằm ngoài đoạn A’B
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Cho hai tam giác vuông cân OAB và OA’B’ có chung đỉnh O sao cho O nằm trên đoạn AB’ và nằm ngoài đoạn A’B. Gọi G và G’ lần lượt là trọng tâm của \(\Delta \)OAA’ và \(\Delta \)OBB’. Chứng minh rằng \(\Delta \)OGG’ là tam giác vuông cân.
Phương pháp giải - Xem chi tiết
Tam giác vuông cân là tam giác có một góc bằng \({90^o}\) và 2 cạnh góc vuông bằng nhau.
Lời giải chi tiết
Do DOAB là tam giác vuông cân nên OA = OB và \(\widehat {AOB} = 90^\circ \)
Do DOA’B’ là tam giác vuông cân nên OA’ = OB’ và \(\widehat {A'OB'} = 90^\circ \)
Phép quay tâm O, góc quay 90° biến:
⦁ Điểm O thành điểm O;
⦁ Điểm A thành điểm B;
⦁ Điểm A’ thành điểm B’.
Do đó ảnh của \(\Delta \) OAA’ qua phép quay tâm O, góc quay 90° là \(\Delta \) OBB’.
Mà G, G’ lần lượt là trọng tâm của \(\;\Delta OAA',{\rm{ }}\Delta OBB'.\)
Vì vậy ảnh của G qua phép quay tâm O, góc quay 90° là G’.
Suy ra \(OG{\rm{ }} = {\rm{ }}OG'\) và \(\widehat {GOG'} = \left( {OG,OG'} \right) = 90^\circ \)
DOGG’ có \(OG{\rm{ }} = {\rm{ }}OG'\) và \(\widehat {GOG'} = 90^\circ \) nên là tam giác vuông cân tại O.
Vậy \(\Delta OGG'\) vuông cân tại O.
- Giải bài 4 trang 29 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 2 trang 29 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 1 trang 28 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải mục 2 trang 27, 28 Chuyên đề học tập Toán 11 - Chân trời sáng tạo
- Giải mục 1 trang 25, 26, 27 Chuyên đề học tập Toán 11 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 11 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 12 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 10 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 7 trang 90 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 6 trang 90 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 12 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 11 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 10 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 9 trang 91 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 8 trang 91 Chuyên đề học tập Toán 11 Chân trời sáng tạo