Giải Bài 48 trang 56 sách bài tập toán 7 tập 1 - Cánh diều


Tìm ba số x, y, z biết:

Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên...

Đề bài

Tìm ba số x, y, z biết:

a) \(\dfrac{x}{3} = \dfrac{y}{5} = \dfrac{z}{6}\) và \(x + y + z = 98\);                         

b) \(\dfrac{x}{5} = \dfrac{y}{{ - 6}} = \dfrac{z}{7}\) và \(x - y - z = 16\);

c) \(x:y:z = 2:3:4\) và \(x + 2y - z =  - 8\);

d) \(\dfrac{x}{{ - 3}} = \dfrac{y}{4};{\rm{ }}\dfrac{y}{2} = \dfrac{z}{3}\) và \(x + y + z = 14\).

Phương pháp giải - Xem chi tiết

\(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{g} = \dfrac{{a + c + e}}{{b + d + g}} = \dfrac{{a - c - e}}{{b - d - g}} = \dfrac{{a - c + e}}{{b - d + g}}\) với các tỉ số đều có nghĩa.

Với dãy tỉ số bằng nhau \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{g} \Rightarrow a:b:e = c:d:g\).

Lời giải chi tiết

a) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\dfrac{x}{3} = \dfrac{y}{5} = \dfrac{z}{6} = \dfrac{{x + y + z}}{{3 + 5 + 6}} = \dfrac{{98}}{{14}} = 7\)

Suy ra: \(\left\{ \begin{array}{l}x = 7{\rm{ }}.{\rm{ }}3 = 21\\y = 7{\rm{ }}.{\rm{ }}5 = 35\\z = 7{\rm{ }}.{\rm{ }}6 = 42\end{array} \right.\).                          

b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\dfrac{x}{5} = \dfrac{y}{{ - 6}} = \dfrac{z}{7} = \dfrac{{x - y - z}}{{5 - ( - 6) - 7}} = \dfrac{{16}}{4} = 4\)

Suy ra: \(\left\{ \begin{array}{l}x = 4{\rm{ }}.{\rm{ 5}} = 20\\y = 4{\rm{ }}.{\rm{ (}} - {\rm{6)}} =  - 24\\z = 4{\rm{ }}.{\rm{ 7}} = 28\end{array} \right.\).

c) Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:\(x:y:z = 2:3:4 \Rightarrow \dfrac{x}{2} = \dfrac{y}{3} = \dfrac{z}{4} = \dfrac{{x + 2y - z}}{{2 + 2{\rm{ }}.{\rm{ }}3 - 4}} = \dfrac{{ - 8}}{4} =  - 2\)

Suy ra: \(\left\{ \begin{array}{l}x = ( - 2){\rm{ }}.{\rm{ 2}} =  - 4\\y = ( - 2){\rm{ }}.{\rm{ 3}} =  - 6\\z = ( - 2){\rm{ }}.{\rm{ 4}} =  - 8\end{array} \right.\).

d) Ta có:  

\(\begin{array}{l}\dfrac{x}{{ - 3}} = \dfrac{y}{4};{\rm{ }}\dfrac{y}{2} = \dfrac{z}{3} \Rightarrow \dfrac{{2y}}{4} = \dfrac{z}{3} \Rightarrow \dfrac{y}{4} = \dfrac{z}{{3{\rm{ }}.{\rm{ }}2}} = \dfrac{z}{6}\\ \Rightarrow \dfrac{x}{{ - 3}} = \dfrac{y}{4} = \dfrac{z}{6}\end{array}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được: \(\dfrac{x}{{ - 3}} = \dfrac{y}{4} = \dfrac{z}{6} = \dfrac{{x + y + z}}{{( - 3) + 4 + 6}} = \dfrac{{14}}{7} = 2\)

Suy ra: \(\left\{ \begin{array}{l}x = 2{\rm{ }}.{\rm{ (}} - {\rm{3)}} =  - 6\\y = 2{\rm{ }}.{\rm{ 4}} = 8\\z = 2{\rm{ }}.{\rm{ 6}} = 12\end{array} \right.\).


Bình chọn:
4.4 trên 17 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí