Giải bài 44 trang 61 SBT toán 10 - Cánh diều


Người ta muốn thiết kế một vườn hoa hình chữ nhật nội tiếp trong một miếng đất hình tròn có đường kính bằng 50 m (Hình 23).

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Người ta muốn thiết kế một vườn hoa hình chữ nhật nội tiếp trong một miếng đất hình tròn có đường kính bằng 50 m (Hình 23). Xác định kích thước vườn hoa hình chữ nhật để tổng quãng đường đi xung quanh vườn hoa đó là 140 m.

Phương pháp giải - Xem chi tiết

Đặt độ dài 1 cạnh của hình chữ nhật là \(x\)(m) (\(0 < x < 50\)).

Biểu diễn cạnh còn lại và chu vi của hình chữ nhật theo x.

Lời giải chi tiết

Đặt độ dài một cạnh của hình chữ nhật là \(x\)(m) (\(0 < x < 50\)).

Độ dài đường chéo hình chữ nhật = Đường kính đường tròn = 50m.

Độ dài cạnh còn lại của hình chữ nhật đó là \(\sqrt {{{50}^2} - {x^2}}  = \sqrt {2500 - {x^2}} \) (m)

Khi đó, tổng quãng đường đi xung quanh vườn hoa bằng chu vi hình chữ nhật là: \(2\left( {\sqrt {2500 - {x^2}}  + x} \right) = 140\) (m)

Ta có phương trình: \(2\left( {\sqrt {2500 - {x^2}}  + x} \right) = 140 \Leftrightarrow \sqrt {2500 - {x^2}}  + x = 70 \Rightarrow \sqrt {2500 - {x^2}}  = 70 - x\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}x > 0\\70 - x \ge 0\\2500 - {x^2} = {\left( {70 - x} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0 < x \le 70\\2500 - {x^2} = {x^2} - 140x + {70^2}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}0 < x \le 70\\2{x^2} - 140x + 2400 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0 < x \le 70\\\left[ \begin{array}{l}x = 30\\x = 40\;\end{array} \right.\quad \end{array} \right.\end{array}\)

Nếu \(x = 40\) thì độ dài cạnh còn lại là 30 (m) và ngược lại.

Vậy kích thước vườn hoa là 30 x 40 (m)

 


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Cánh diều - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!