Giải bài 4.39 trang 87 SGK Toán 7 tập 1 - Kết nối tri thức


Cho tam giác ABC vuông tại A có B = 60°. Trên cạnh BC lấy điểm M sao cho CAM=30. Chứng minh rằng: a) Tam giác CAM cân tại M; b) Tam giác BAM là tam giác đều; c) M là trung điểm của đoạn thẳng BC.

Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Khoa học tự nhiên...

Đề bài

Cho tam giác ABC vuông tại A có B = 60°. Trên cạnh BC lấy điểm M sao cho \(\widehat {CAM} = {30^o}\). Chứng minh rằng:

a) Tam giác CAM cân tại M;

b) Tam giác BAM là tam giác đều;

c) M là trung điểm của đoạn thẳng BC.

Phương pháp giải - Xem chi tiết

a)      Dùng tính chất tổng 3 góc trong 1 tam giác bằng 180 độ suy ra góc A bằng góc C.

b)      Chứng minh tam giác ABM cân có 1 góc bằng 60 độ

c)      Dùng tính chất tổng 3 góc trong 1 tam giác bằng 180 độ để tính số đo 3 góc từ đó suy ra tam giác đều

Lời giải chi tiết

a) Xét tam giác ABC có:

\(\begin{array}{l}\widehat A + \widehat B + \widehat C = {180^o}\\ {90^o} + {60^o} + \widehat C = {180^o}\\ \widehat C = {30^o}\end{array}\)

Xét tam giác CAM có \(\widehat A = \widehat C = {30^o}\)

Suy ra tam giác CAM cân tại M.

b) Xét tam giác CAM có:

\(\begin{array}{l}\widehat C + \widehat {CMA} + \widehat {CAM} = {180^o}\\ {30^o} + \widehat {CMA} + {30^o} = {180^o}\\  \widehat {CMA} = {120^o}\\ \widehat {BMA} = {180^o} - \widehat {CMA} = {180^o} - {120^o} = {60^o}\end{array}\)

Xét tam giác ABM có:

\(\begin{array}{l}\widehat B + \widehat {BMA} + \widehat {BAM} = {180^o}\\ {60^o} + {60^o} + \widehat {BAM} = {180^o}\\ \widehat {BAM} = {60^o}\end{array}\)

Do \(\widehat {BAM} = \widehat {BMA} = \widehat {ABM} = {60^o}\) nên tam giác ABM đều.

c) Vì \(\Delta ABM\) đều nên \(AB = BM = AM\)

Mà \(\Delta CAM\) cân tại M nên MA = MC

Suy ra MB = MC. Mà M nằm giữa B và C

Do đó M là trung điểm của BC.


Bình chọn:
4.5 trên 47 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí