Giải bài 4.26 trang 70 SGK Toán 10 – Kết nối tri thức


Cho tam giác ABC có trọng tâm G. Chứng minh rằng với mọi điểm M, ta có

Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Cho tam giác ABC có trọng tâm G. Chứng minh rằng với mọi điểm M, ta có:

\(M{A^2} + M{B^2} + M{C^2} = 3M{G^2} + G{A^2} + G{B^2} + G{C^2}\)

Phương pháp giải - Xem chi tiết

+) \(M{A^2} = {\overrightarrow {MA} ^2}\)

+) Với 3 điểm M, A, G bất kì ta có: \(\overrightarrow {MG}  + \overrightarrow {GA}  = \overrightarrow {MA} \)

+) G là trọng tâm tam giác ABC thì: \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)

Lời giải chi tiết

Ta có:

 \(\begin{array}{l}M{A^2} + M{B^2} + M{C^2} = {\overrightarrow {MA} ^2} + {\overrightarrow {MB} ^2} + {\overrightarrow {MC} ^2}\\ = {\left( {\overrightarrow {MG}  + \overrightarrow {GA} } \right)^2} + {\left( {\overrightarrow {MG}  + \overrightarrow {GB} } \right)^2} + {\left( {\overrightarrow {MG}  + \overrightarrow {GC} } \right)^2}\\ = {\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow {GA}  + {\overrightarrow {GA} ^2} + {\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow {GB}  + {\overrightarrow {GB} ^2} + {\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow {GC}  + {\overrightarrow {GC} ^2}\\ = 3{\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\left( {\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC} } \right) + {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2}\\ = 3{\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow 0  + {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2}\end{array}\)

( do G là trọng tâm tam giác ABC)

\(\begin{array}{l} = 3{\overrightarrow {MG} ^2} + {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2}\\ = 3M{G^2} + G{A^2} + G{B^2} + G{C^2}\end{array}\) (đpcm).


Bình chọn:
4.4 trên 14 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí