Giải bài 4.16 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống>
Cho tứ giác ABCD. Gọi M,\,\,N theo thứ tự là trung điểm của cạnh AB,\,\,CD và gọi I là trung điểm của MN. Chứng minh rằng với điểm O bất kì đều có
Đề bài
Cho tứ giác \(ABCD.\) Gọi \(M,\,\,N\) theo thứ tự là trung điểm của cạnh \(AB,\,\,CD\) và gọi \(I\) là trung điểm của \(MN.\) Chứng minh rằng với điểm \(O\) bất kì đều có
\(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = 4\overrightarrow {OI} .\)
Phương pháp giải - Xem chi tiết
- Tính chất trun điểm: \(\overrightarrow {IA} + \overrightarrow {IB} = 2\overrightarrow {IM} \)
- Chèn điểm I vào giữa các vectơ \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} \)
Lời giải chi tiết
Ta có: \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \left( {\overrightarrow {OI} + \overrightarrow {IA} } \right) + \left( {\overrightarrow {OI} + \overrightarrow {IB} } \right) + \left( {\overrightarrow {OI} + \overrightarrow {IC} } \right) + \left( {\overrightarrow {OI} + \overrightarrow {ID} } \right)\)
\(\begin{array}{l} = 4\overrightarrow {OI} + \left( {\overrightarrow {IA} + \overrightarrow {IB} } \right) + \left( {\overrightarrow {IC} + \overrightarrow {ID} } \right)\\ = 4\overrightarrow {OI} + 2\overrightarrow {IM} + 2\overrightarrow {IN} \\ = 4\overrightarrow {OI} \end{array}\)
- Giải bài 4.17 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 4.18 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 4.19 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 4.20 trang 55 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 4.21 trang 55 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay