Giải bài 4 trang 96 SGK Toán 7 tập 2 - Cánh diều


Trong Hình 76, cho biết các tam giác ABD và BCE là tam giác đều và A, B, C thẳng hàng. Chứng minh rằng:

Tổng hợp đề thi giữa kì 2 lớp 7 tất cả các môn - Cánh diều

Toán - Văn - Anh - KHTN...

Đề bài

Trong Hình 76, cho biết các tam giác ABDBCE là tam giác đều và A, B, C thẳng hàng. Chứng minh rằng:

 

a) AD // BEBD // CE;

b) ABE^=DBC^=120;

c) AE = CD.

Phương pháp giải - Xem chi tiết

a) Ta chứng minh AD // BE BD // CE dựa vào các cặp góc bằng nhau ở vị trí đồng vị.

b) Chứng minh ABE^=DBC^=120 dựa vào số đo góc của ba điểm thẳng hàng là 180°.

c) Chứng minh AE = CD bằng cách chứng minh tam giác ABE bằng tam giác DBC

Lời giải chi tiết

a)

Tam giác ABDBCE là tam giác đều nên EBC^=DAB^=60

Vì A, B, C thẳng hàng nên DAB^=DAC^ suy ra EBC^=DAB^.

Mà góc EBC và góc DAC ở vị trí đồng vị nên AD // BE.

Tam giác ABDBCE là tam giác đều nên DBA^=ECB^=60

Vì A, B, C thẳng hàng nên  ECB^=ECA^ suy ra DBA^=ECB^.

Mà góc DBA và góc ECA ở vị trí đồng vị nên BD // CE.

b) Ta có A, B, C thẳng hàng nên góc ABC bằng 180°. Mà DBA^=EBC^=60DBE^=60.

Vậy ABE^=DBC^=120 (ABE^=DBA^+DBE^;DBC^=DBE^+EBC^).

c) Tam giác ABDBCE là tam giác đều 

AB=AD,BE=BC

Xét hai tam giác ABEDBC có:

     AB = DB;

     ABE^=DBC^=120;

     BE = BC.

ΔABE=ΔDBC (c.g.c)

Do đó, AE = DC ( 2 cạnh tương ứng).

ABE^=DBC^=120


Bình chọn:
4.6 trên 22 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.