Giải bài 4 trang 92, 93 vở thực hành Toán 9 tập 2>
Cho đường tròn (I) nội tiếp tam giác ABC với các tiếp điểm trên các cạnh AB, AC lần lượt là E, F. Chứng minh rằng (widehat {EIF} + widehat {BAC} = {180^o}).
Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - KHTN - Lịch sử và Địa lí
Đề bài
Cho đường tròn (I) nội tiếp tam giác ABC với các tiếp điểm trên các cạnh AB, AC lần lượt là E, F. Chứng minh rằng \(\widehat {EIF} + \widehat {BAC} = {180^o}\).
Phương pháp giải - Xem chi tiết
+ Chứng minh \(\widehat {EIA} + \widehat {IAE} = {90^o}\) và \(\widehat {FAI} + \widehat {AIF} = {90^o}\).
+ \(\widehat {EIF} + \widehat {BAC} = \widehat {EIA} + \widehat {FIA} + \widehat {IAF} + \widehat {IAE}\)
\(= \left( {\widehat {EIA} + \widehat {IAE}} \right) + \left( {\widehat {FAI} + \widehat {AIF}} \right)\), suy ra điều phải chứng minh.
Lời giải chi tiết
Vì các tam giác EIA và FIA lần lượt vuông tại đỉnh E và F nên \(\widehat {EIA} + \widehat {IAE} = {90^o}\) và \(\widehat {FAI} + \widehat {AIF} = {90^o}\).
Ta có:
\(\begin{array}{l}\widehat {EIF} + \widehat {BAC} = \widehat {EIA} + \widehat {FIA} + \widehat {IAF} + \widehat {IAE}\\ = \left( {\widehat {EIA} + \widehat {IAE}} \right) + \left( {\widehat {FAI} + \widehat {AIF}} \right)\\ = {90^o} + {90^o} = {180^o}\end{array}\)
- Giải bài 5 trang 93 vở thực hành Toán 9 tập 2
- Giải bài 6 trang 93 vở thực hành Toán 9 tập 2
- Giải bài 7 trang 93 vở thực hành Toán 9 tập 2
- Giải bài 8 trang 94 vở thực hành Toán 9 tập 2
- Giải bài 3 trang 92 vở thực hành Toán 9 tập 2
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay