Giải bài 35 trang 117 sách bài tập toán 9 - Cánh diều tập 1


Một chiếc cầu được thiết kế như một cung AB của đường tròn (O) với độ dài AB = 40m và chiều cao MK = 6m (Hình 35). Tính bán kính của đường tròn chứa cung AMB (làm tròn kết quả đến hàng phần mười của mét).

Đề bài

Cho tam giác ABC vuông tại A có đường cao AH. Vẽ đường tròn tâm O đường kính AC. Trên tia BH, lấy điểm D sao cho H là trung điểm của đoạn thẳng BD. Nối A với D cắt đường tròn (O) tại E. Chứng minh:

a) CH là tia phân giác của góc ACE;

b) OH // EC.

Phương pháp giải - Xem chi tiết

a) Bước 1: Chứng minh \(\widehat {{A_1}} = \widehat {{C_1}}\) (vì cùng bằng \(\widehat {{A_2}}\))

Bước 2: Chứng minh \(\widehat {{A_1}} = \widehat {{C_2}}\) (cùng phụ với góc B).

b) Chứng minh 2 góc đồng vị bằng nhau \(\widehat {{O_1}} = 2\widehat {{C_2}}\)(góc ở tâm bằng số đo cung bị chắn, góc nội tiếp bằng nửa số đo cung bị chắn).

Lời giải chi tiết

a) Ta có \(\widehat {{A_2}} = \widehat {{C_1}}\) (góc nội tiếp chắn cung HE của (O)).

Xét \(\Delta ABD\)có \(AH \bot BD,BH = DH\), hay AH vừa là đường cao, vừa là đường trung tuyến, nên tam giác ABD cân tại A, do đó AH đồng thời là đường phân giác, suy ra \(\widehat {{A_1}} = \widehat {{A_2}}\).

Vậy \(\widehat {{A_1}} = \widehat {{C_1}}\) (1)

Mặt khác \(\widehat {{A_1}} + \widehat B = 90^\circ \) (do tam giác AHB vuông tại H), \(\widehat {{C_2}} + \widehat B = 90^\circ \) (do tam giác ACB vuông tại A). Do đó  \(\widehat {{A_1}} = \widehat {{C_2}}\) (2)

Từ (1) và (2) suy ra \(\widehat {{C_2}} = \widehat {{C_1}}\) hay CH là tia phân giác của góc ACE.

b) Ta có \(\widehat {{O_1}}\) là góc ở tâm và \(\widehat {{C_2}}\)  là góc nội tiếp cùng chắn cung AH của (O)

nên \(\widehat {{O_1}} = 2\widehat {{C_2}}\)= \(\widehat {ACE}\) = sđ\(\overset\frown{AH}\).

Mà \(\widehat {{O_1}};\widehat {ACE}\) là 2 góc đồng vị nên OH // EC.


Bình chọn:
3.6 trên 5 phiếu
  • Giải bài 36 trang 117 sách bài tập toán 9 - Cánh diều tập 1

    Cho đường tròn (O; 1dm) và ba điểm A, B, C nằm trên đường tròn sao cho \(\widehat {ABC} = 45^\circ \), \(\widehat {ACB} = 15^\circ \). Kẻ AH vuông góc với BC tại H, tia AH cắt đường tròn (O) tại E (Hình 36). Tính: a) Số đo cung nhỏ CE và số đo cung lớn BC; b) Độ dài các đoạn thẳng AC, BC.

  • Giải bài 34 trang 116 sách bài tập toán 9 - Cánh diều tập 1

    Một chiếc cầu được thiết kế như một cung AB của đường tròn (O) với độ dài AB = 40m và chiều cao MK = 6m (Hình 35). Tính bán kính của đường tròn chứa cung AMB (làm tròn kết quả đến hàng phần mười của mét).

  • Giải bài 33 trang 116 sách bài tập toán 9 - Cánh diều tập 1

    Cho hai đường tròn (O; R) và (O’; R) cắt nhau tại hai điểm A, B. Kẻ đường kính AC của đường tròn (O) và đường kính AD của đường tròn (O’). So sánh độ dài dây BC của đường tròn (O) và độ dài dây BD của đường tròn (O’)

  • Giải bài 32 trang 116 sách bài tập toán 9 - Cánh diều tập 1

    Cho đường tròn (O; R) và hai điểm A, B nằm trên đường tròn. Vẽ hai tiếp tuyến tại A và B của đường tròn (O), hai tiếp tuyến đó cắt nhau tại M. a) Tính số đo cung nhỏ AB và số đo cung lớn AB nếu \(\widehat {AMB} = 40^\circ \). b) Tính diện tích của tứ giác OAMB theo R nếu số đo cung nhỏ AB bằng 120⁰.

  • Giải bài 31 trang 116 sách bài tập toán 9 - Cánh diều tập 1

    Bạn An đố bạn Bình: “Hãy xác định tâm của đường tròn mà chỉ dùng ê ke.” Bạn Bình đã xác định tâm O của đường tròn như sau: - Lần thứ nhất: đặt góc vuông của ê ke tại điểm A, hai cạnh góc vuông của ê ke lần lượt cắt đường tròn tại hai điểm (gọi hai điểm đó là B, C); - Lần thứ hai: đặt góc vuông của ê ke tại điểm H, hai cạnh góc vuông của ê ke lần lượt cắt đường tròn tại hai điểm (gọi hai điểm đó là I, K). Quan sát Hình 34 và chứng minh rằng bằng cách làm hai lần như trên thì bạn Bình đã giải

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Cánh diều - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí