Giải bài 3 trang 99 vở thực hành Toán 9 tập 2


Cho hình bình hành ABCD nội tiếp đường tròn (O). Chứng minh rằng ABCD là hình chữ nhật.

Đề bài

Cho hình bình hành ABCD nội tiếp đường tròn (O). Chứng minh rằng ABCD là hình chữ nhật.

Phương pháp giải - Xem chi tiết

Do hình bình hành ABCD nội tiếp đường tròn (O) nên tổng các góc đối bằng \({180^o}\). Do đó, \(\widehat A = \widehat C = \frac{{\widehat A + \widehat C}}{2} = {90^o}\). Suy ra hình bình hành ABCD là hình chữ nhật.

Lời giải chi tiết

Do hình bình hành ABCD nội tiếp nên tổng các góc đối bằng \({180^o}\).

Do đó \(\widehat A = \widehat C = \frac{{\widehat A + \widehat C}}{2} = {90^o}\).

Do vậy hình bình hành ABCD có hai góc vuông nên là hình chữ nhật.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí