Giải bài 3 trang 17 vở thực hành Toán 9


Cho hình chóp tam giác đều có cạnh đáy là tam giác đều cạnh a (cm) và chiều cao 10cm. a) Tính diện tích đáy S của hình chóp theo a. b) Từ kết quả câu a, tính thể tích V của hình chóp theo a và tính giá trị của V khi (a = 4cm). c) Nếu độ dài cạnh đáy giảm đi hai lần thì thể tích hình chóp thay đổi thế nào?

Đề bài

Cho hình chóp tam giác đều có cạnh đáy là tam giác đều cạnh a (cm) và chiều cao 10cm.

a) Tính diện tích đáy S của hình chóp theo a.

b) Từ kết quả câu a, tính thể tích V của hình chóp theo a và tính giá trị của V khi \(a = 4cm\).

c) Nếu độ dài cạnh đáy giảm đi hai lần thì thể tích hình chóp thay đổi thế nào?

Phương pháp giải - Xem chi tiết

a) Áp dụng định lí Pythagore, ta tính được chiều cao của tam giác đều cạnh a.

b) Thể tích của hình chóp tam giác đều là: \(V = \frac{1}{3}S.h\).

c) + Tính chiều cao mới của đáy hình chóp theo a.

+ Tính diện tích đáy hình chóp mới bằng bao nhiêu lần diện tích đáy hình chóp cũ.

+ Tính thể tích hình chóp mới bằng bao nhiêu lần thể tích hình chóp cũ.

Lời giải chi tiết

a) Áp dụng định lí Pythagore, ta tính được chiều cao của tam giác đều cạnh a là:

\({h_1} = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}}  = \sqrt {\frac{{3{a^2}}}{4}}  = \frac{{a\sqrt 3 }}{2}\left( {cm} \right)\).

Diện tích đáy S của hình chóp là:

\(S = \frac{1}{2}a.{h_1} = \frac{1}{2}a.\frac{{a\sqrt 3 }}{2} = \frac{{{a^2}\sqrt 3 }}{4}\left( {c{m^2}} \right)\).

b) Thể tích của hình chóp tam giác đều là:

\(V = \frac{1}{3}S.h = \frac{1}{3}.\frac{{{a^2}\sqrt 3 }}{4}.10 = \frac{{5\sqrt 3 }}{6}{a^2}\left( {c{m^3}} \right)\).

Thay a = 4 cm, ta được \(S = \frac{{5\sqrt 3 }}{6}{4^2} = \frac{40\sqrt 3}{3} \left( {c{m^3}} \right)\).

c) Chiều cao mới của đáy là:

hmới \( = \sqrt {{{\left( {\frac{a}{2}} \right)}^2} - {{\left( {\frac{a}{4}} \right)}^2}} \)

\(= \sqrt {\frac{{{a^2}}}{4} - \frac{{{a^2}}}{{16}}}  = \frac{{a\sqrt 3 }}{4}\left( {cm} \right)\).

Diện tích đáy mới là:

Smới \( = \frac{1}{2}.\frac{a}{2}.\frac{{a\sqrt 3 }}{4} = \frac{1}{4}.\frac{{{a^2}\sqrt 3 }}{4} = \frac{1}{4}\).S.

Suy ra Vmới \( = \frac{1}{3}\).Smới.h\( = \frac{1}{3}.\frac{1}{4}\).S.h\( = \frac{1}{4}\).V

Vậy nếu độ dài cạnh đáy giảm đi hai lần thì thể tích hình chóp giảm đi 4 lần.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 4 trang 18 vở thực hành Toán 9 tập 2

    Sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn, giải các phương trình sau: a) ({x^2} - 2sqrt 5 x + 1 = 0); b) (3{x^2} - 9x + 3 = 0); c) (11{x^2} - 13x + 5 = 0); d) (2{x^2} + 2sqrt 6 x + 3 = 0).

  • Giải bài 5 trang 18 vở thực hành Toán 9 tập 2

    Sử dụng máy tính cầm tay, tìm nghiệm gần đúng các phương trình sau (làm tròn kết quả đến chữ số thập phân thứ hai): a) (sqrt 2 {x^2} - sqrt 5 x - 1 = 0); b) ({x^2} - left( {sqrt 3 - 1} right)x - sqrt 7 = 0).

  • Giải bài 6 trang 18 vở thực hành Toán 9 tập 2

    Từ một tấm tôn hình vuông, người ta cắt bỏ bốn hình vuông có độ dài cạnh 8cm ở bốn góc, sau đó gập thành một chiếc thùng có dạng hình hộp chữ nhật không có nắp và có thể tích là (200c{m^3}). Hãy tính độ dài cạnh của tấm tôn hình vuông ban đầu.

  • Giải bài 7 trang 19 vở thực hành Toán 9 tập 2

    Giả sử doanh thu (nghìn đồng) của một cửa hàng bán phở trong một ngày có thể mô hình hóa bằng công thức (Rleft( x right) = xleft( {220 - 4x} right)) với (30 le x le 50), trong đó x (nghìn đồng) là giá tiền của một bát phở. Nếu muốn doanh thu trong ngày của cửa hàng là 3 triệu đồng thì giá bán của mỗi bát phở phải là bao nhiêu?

  • Giải bài 8 trang 19 vở thực hành Toán 9 tập 2

    Tìm điểm A (khác gốc tọa độ O) nằm trên đồ thị hàm số (y = {x^2}) sao cho khoảng cách từ điểm đó tới hai trục tọa độ là bằng nhau.

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí