Giải bài 3 trang 112 sách bài tập toán 11 - Chân trời sáng tạo tập 1>
Cho tứ diện ABCD. Gọi E, F, G lần lượt là các điểm thuộc ba cạnh AB, AC, BD sao cho EF cắt BC tại I, AD cắt EG tại H. Chứng minh rằng ba đường thẳng CD, IG, HF cùng đi qua một điểm.
Đề bài
Cho tứ diện ABCD. Gọi E, F, G lần lượt là các điểm thuộc ba cạnh AB, AC, BD sao cho EF cắt BC tại I, AD cắt EG tại H. Chứng minh rằng ba đường thẳng CD, IG, HF cùng đi qua một điểm.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về chứng minh ba đường thẳng đồng quy để chứng minh ba đường thẳng đồng quy:
+ Gọi O là giao điểm của HF và IG
+ Chứng minh O thuộc CD.
Lời giải chi tiết
Gọi O là giao điểm của HF và IG.
Ta có: \(O \in HF\), mà \(HF \subset \left( {ACD} \right) \Rightarrow O \in \left( {ACD} \right)\)
Vì \(O \in IG\), mà \(IG \subset \left( {BCD} \right) \Rightarrow O \in \left( {BCD} \right)\)
Do đó, \(O \in \left( {BCD} \right) \cap \left( {ACD} \right)\)
Mặt khác, CD là giao tuyến của hai mặt phẳng (ACD) và (BCD)
Do đó, \(O \in CD\). Vậy ba đường thẳng CD, IG, HF cùng đi qua một điểm.
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 5 trang 162 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 4 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 3 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 2 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 1 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 5 trang 162 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 4 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 3 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 2 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 1 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1