Giải bài 3 trang 111 SGK Toán 7 tập 2 - Cánh diều


Tam giác ABC có ba đường phân giác cắt nhau tại I và AB < AC.

Đề bài

Tam giác ABC có ba đường phân giác cắt nhau tại IAB < AC.

a) Chứng minh \(\widehat {CBI} > \widehat {ACI}\);                                            

b) So sánh IBIC.

Phương pháp giải - Xem chi tiết

a) Góc đối diện với cạnh lớn hơn thì có số đo góc lớn hơn.

b) Cạnh đối diện với góc lớn hơn thì có số đo độ dài lớn hơn.

Lời giải chi tiết

a) Ta có: AB < AC nên \(\widehat {ABC} > \widehat {ACB}\)(góc ABC đối diện với cạnh AC; góc ACB đối diện với cạnh AB).

BICI là hai đường phân giác của góc ABC và góc ACB nên: \(\widehat {CBI} > \widehat {ACI}\)

(Vì: \(\widehat {CBI} = \dfrac{1}{2}\widehat {ABC};\widehat {ACI} = \dfrac{1}{2}\widehat {ACB}\)).

b) Ta có: \(\widehat {ACI} = \widehat {BCI}\)

Mà \(\widehat {CBI} > \widehat {ACI}\) ( câu a) 

Do đó \(\widehat {CBI} > \widehat {BCI}\).

IC đối diện với góc CBIIB đối diện với góc BCI.

Vậy IC > IB (cạnh đối diện với góc lớn hơn thì có số đo độ dài lớn hơn).


Bình chọn:
4.5 trên 15 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí