Bài 22 trang 10 SBT toán 9 tập 2>
Giải bài 22 trang 10 sách bài tập toán 9. Tìm giao điểm của hai đường thẳng: a)(d_1):5x - 2y = c và (d_2):x + by = 2, biết rằng (d_1) đi qua điểm A(5;-1) và (d_2) đi qua điểm B(-7; 3); ...
Tìm giao điểm của hai đường thẳng:
LG a
\(\left( {{d_1}} \right):5x - 2y = c\) và \(\left( {{d_2}} \right):x + by = 2,\) biết rằng \(({d_1})\) đi qua điểm \(A (5; -1)\) và \(({d_2})\) đi qua điểm \(B(-7; 3);\)
Phương pháp giải:
Sử dụng:
- Đường thẳng \(ax+by=c\) đi qua điểm \(M(x_0;y_0)\) \( \Leftrightarrow ax_0+by_0=c\).
- Hai đường thẳng \(({d_1})\): \(ax + by = c\) và \(({d_2})\): \(a'x+b'y = c'\) cắt nhau tại điểm \(M\) thì tọa độ của \(M\) là nghiệm của hệ phương trình: \(\left\{ {\matrix{
{ax + by = c} \cr
{a'x+b'y = c'} \cr} } \right.\)
- Cách giải hệ phương trình bằng phương pháp thế:
+ Bước \(1\): Rút \(x\) hoặc \(y\) từ một phương trình của hệ phương trình, thay vào phương trình còn lại, ta được phương trình mới chỉ còn một ẩn.
+ Bước \(2\): Giải phương trình một ẩn vừa có, rồi từ đó suy ra nghiệm của hệ phương trình đã cho.
Lời giải chi tiết:
Vì \(({d_1})\): \(5x - 2y = c\) đi qua điểm \(A(5; -1)\) nên
\(5.5 - 2.\left( { - 1} \right) = c \Leftrightarrow c = 27.\)
Khi đó phương trình đường thẳng \(({d_1})\): \(5x - 2y = 27\)
Vì \(\left( {{d_2}} \right):x + by = 2\) đi qua điểm \(B( -7; 3)\) nên
\( - 7 + 3b = 2 \Leftrightarrow 3b = 9 \Leftrightarrow b = 3\)
Khi đó phương trình đường thẳng \(\left( {{d_2}} \right):x + 3y = 2\)
Tọa độ giao điểm của \(({d_1})\) và \(({d_2})\) là nghiệm của hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{5x - 2y = 27} \cr
{x + 3y = 2} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 2 - 3y} \cr
{5\left( {2 - 3y} \right) - 2y = 27} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 2 - 3y} \cr
{10 - 15y - 2y = 27} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 2 - 3y} \cr
{ - 17y = 17} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 2 - 3y} \cr
{y = - 1} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 5} \cr
{y = - 1} \cr} } \right. \cr} \)
Vậy tọa độ giao điểm của \(({d_1})\) và \(({d_2})\) là \((5; -1)\)
LG b
\(\left( {{d_1}} \right):ax + 2y = - 3\) và \(\left( {{d_2}} \right):3x - by = 5,\) biết rằng \(({d_1})\) đi qua điểm \(M(3; 9)\) và \(({d_2})\) đi qua điểm \(N(-1; 2).\)
Phương pháp giải:
Sử dụng:
- Đường thẳng \(ax+by=c\) đi qua điểm \(M(x_0;y_0)\) \( \Leftrightarrow ax_0+by_0=c\).
- Hai đường thẳng \(({d_1})\): \(ax + by = c\) và \(({d_2})\): \(a'x+b'y = c'\) cắt nhau tại điểm \(M\) thì tọa độ của \(M\) là nghiệm của hệ phương trình: \(\left\{ {\matrix{
{ax + by = c} \cr
{a'x+b'y = c'} \cr} } \right.\)
- Cách giải hệ phương trình bằng phương pháp thế:
+ Bước \(1\): Rút \(x\) hoặc \(y\) từ một phương trình của hệ phương trình, thay vào phương trình còn lại, ta được phương trình mới chỉ còn một ẩn.
+ Bước \(2\): Giải phương trình một ẩn vừa có, rồi từ đó suy ra nghiệm của hệ phương trình đã cho.
Lời giải chi tiết:
Vì \(\left( {{d_1}} \right):ax + 2y = -3\) đi qua điểm \(M (3; 9)\) nên \(a.3 + 2.9 = - 3 \Leftrightarrow 3a = - 21 \\ \Leftrightarrow a = - 7\)
Khi đó phương trình đường thẳng \(\left( {{d_1}} \right): - 7x + 2y = - 3\)
Vì \(\left( {{d_2}} \right):3x - by = 5\) đi qua điểm \(N (-1; 2)\) nên \(3.\left( { - 1} \right) - b.2 = 5 \Leftrightarrow - 2b = 8 \\ \Leftrightarrow b = - 4\)
Khi đó phương trình đường thẳng \(\left( {{d_2}} \right):3x + 4y = 5\)
Tọa độ giao điểm của \(({d_1})\)và \(({d_2})\) là nghiệm của hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{ - 7x + 2y = - 3} \cr
{3x + 4y = 5} \cr} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{y = \displaystyle {{7x - 3} \over 2}} \cr
{\displaystyle 3x + 4.{{7x - 3} \over 2} = 5} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{y = \displaystyle {{7x - 3} \over 2}} \cr
{17x = 11} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y =\displaystyle {{7x - 3} \over 2}} \cr
{x = \displaystyle{{11} \over {17}}} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x =\displaystyle {{11} \over {17}}} \cr
{y = \displaystyle {{13} \over {17}}} \cr} } \right. \cr} \)
Vậy tọa độ giao điểm của \(({d_1})\)và \(({d_2})\) là \(\displaystyle\left( {{{11} \over {17}};{{13} \over {17}}} \right)\).
Loigiaihay.com
- Bài 23 trang 10 SBT toán 9 tập 2
- Bài 24 trang 10 SBT toán 9 tập 2
- Bài 3.1, 3.2 phần bài tập bổ sung trang 10 SBT toán 9 tập 2
- Bài 21 trang 9 SBT toán 9 tập 2
- Bài 20 trang 9 SBT toán 9 tập 2
>> Xem thêm