Giải bài 2 trang 108 vở thực hành Toán 9>
Cho tam giác ABC không là tam giác vuông. Gọi H và K là chân các đường vuông góc lần lượt hạ từ B và C xuống AC và AB. Chứng minh rằng: a) Đường tròn đường kính BC đi qua các điểm H và K; b) (KH < BC).
Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - KHTN - Lịch sử và Địa lí
Đề bài
Cho tam giác ABC không là tam giác vuông. Gọi H và K là chân các đường vuông góc lần lượt hạ từ B và C xuống AC và AB. Chứng minh rằng:
a) Đường tròn đường kính BC đi qua các điểm H và K;
b) \(KH < BC\).
Phương pháp giải - Xem chi tiết
a) Gọi O là trung điểm của BC. Chứng minh \(OH = OK = \frac{1}{2}BC\) nên đường tròn đường kính BC đi qua các điểm H và K.
b) Trong một đường tròn, đường kính là dây cung lớn nhất.
Lời giải chi tiết
(H.5.20)
a) Gọi O là trung điểm của BC. Do \(\widehat {BHC} = \widehat {BKC} = {90^o}\) nên các tam giác BKC, BHC lần lượt vuông tại K và H.
Ta có: \(OH = OK = \frac{1}{2}BC\). Do đó, đường tròn đường kính BC đi qua các điểm H và K.
b) Theo câu a, HK là dây của đường tròn đường kính BC. Do đó, \(KH < BC\).
- Giải bài 3 trang 108 vở thực hành Toán 9
- Giải bài 4 trang 109 vở thực hành Toán 9
- Giải bài 5 trang 109, 110 vở thực hành Toán 9
- Giải bài 6 trang 110, 111 vở thực hành Toán 9
- Giải bài 7 trang 111 vở thực hành Toán 9
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay