Giải bài 16 trang 90 sách bài tập toán 9 - Cánh diều tập 2>
Cho đường tròn (O) ngoại tiếp tam giác đều ABC. Điểm E nằm trên cung nhỏ BC (E khác B và C). ED là tia đối của tia EB. Chứng minh EC là phân giác của góc AED và EA là phân giác của góc BEC.
Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều
Toán - Văn - Anh - KHTN - Lịch sử và Địa lí
Đề bài
Cho đường tròn (O) ngoại tiếp tam giác đều ABC. Điểm E nằm trên cung nhỏ BC (E khác B và C). ED là tia đối của tia EB. Chứng minh EC là phân giác của góc AED và EA là phân giác của góc BEC.
Phương pháp giải - Xem chi tiết
Chứng minh \(\widehat {AEB} = \widehat {AEC} = {60^o}\)suy ra EA là phân giác của góc BEC.
Lời giải chi tiết
Ta có tứ giác ABEC nội tiếp đường tròn nên \(\widehat {CED} = \widehat {BAC} = {60^o}( = {180^o} - \widehat {BEC})\). Mặt khác \(\widehat {AEC} = \widehat {CED} = {60^o}\). Do đó, EC là phân giác của góc AED.
Tương tự ta có \(\widehat {AEC} = \widehat {ABC} = {60^o}\) và \(\widehat {AEB} = \widehat {ACB} = {60^o}\).
Do đó \(\widehat {AEB} = \widehat {AEC} = {60^o}\) hay EA là phân giác của góc BEC.
- Giải bài 17 trang 90 sách bài tập toán 9 - Cánh diều tập 2
- Giải bài 18 trang 91 sách bài tập toán 9 - Cánh diều tập 2
- Giải bài 19 trang 91 sách bài tập toán 9 - Cánh diều tập 2
- Giải bài 20 trang 91 sách bài tập toán 9 - Cánh diều tập 2
- Giải bài 21 trang 91 sách bài tập toán 9 - Cánh diều tập 2
>> Xem thêm
Các bài khác cùng chuyên mục