Giải bài 10 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 1


Tại một nhà máy, người ta đo được rằng 80% lượng nước sau khi sử dụng được xử lí và tái sử dụng. Với \(100{m^3}\) ban đầu được sử dụng lần đầu tại nhà máy, khi quá trình xử lí và tái sử dụng lặp lại mãi mãi, nhà máy sử dụng được tổng lượng nước là bao nhiêu?

Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Tại một nhà máy, người ta đo được rằng 80% lượng nước sau khi sử dụng được xử lí và tái sử dụng. Với \(100{m^3}\) ban đầu được sử dụng lần đầu tại nhà máy, khi quá trình xử lí và tái sử dụng lặp lại mãi mãi, nhà máy sử dụng được tổng lượng nước là bao nhiêu?

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về tổng của cấp số nhân lùi vô hạn để tính: Cấp số nhân vô hạn \(\left( {{u_n}} \right)\) có công bội q thỏa mãn \(\left| q \right| < 1\) được gọi là cấp số nhân lùi vô hạn. Cấp số nhân lùi vô hạn này có tổng là: \(S = {u_1} + {u_2} + ... + {u_n} + ... = \frac{{{u_1}}}{{1 - q}}\)

Lời giải chi tiết

Lượng nước ban đầu: \({u_1} = 100\left( {{m^3}} \right)\)

Lượng nước sau khi xử lí và tái sử dụng lần 1 là: \(100.80\%  = 100.0,8\left( {{m^3}} \right)\)

Lượng nước sau khi xử lí và tái sử dụng lần 2 là: \(100.0,8.80\%  = 100.0,{8^2}\left( {{m^3}} \right)\)

Lượng nước sau khi xử lí và tái sử dụng lần 3 là: \(100.0,{8^2}.80\%  = 100.0,{8^3}\left( {{m^3}} \right)\)

Tổng lượng nước sau khi xử lí và tái sử dụng mãi mãi là một cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = 100\) và công bội \(q = 0,8\).

Do đó, \(100 + 100.0,8 + 100.0,{8^2} + 100.0,{8^3} + ... = \frac{{100}}{{1 - 0,8}} = 500\left( {{m^3}} \right)\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí