Giải bài 1 trang 64 Chuyên đề học tập Toán 10 – Chân trời sáng tạo


Xác định tâm sai, tọa độ tiêu điểm và phương trình đường chuẩn tương ứng của mỗi đường conic sau:

Đề bài

Xác định tâm sai, tọa độ tiêu điểm và phương trình đường chuẩn tương ứng của mỗi đường conic sau:

a) \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{7} = 1\)

b) \(\frac{{{x^2}}}{{15}} - \frac{{{y^2}}}{{10}} = 1\)

c) \({y^2} = x\)

Phương pháp giải - Xem chi tiết

a) Elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\), \(c = \sqrt {{a^2} - {b^2}} \)

+ Tâm sai của elip: \(e = \frac{c}{a}\)

+ Tiêu điểm \({F_1}( - c;0),{F_2}(c;0)\)

+ Đường chuẩn: \({\Delta _1}:x =  - \frac{a}{e}\) và \({\Delta _2}:x = \frac{a}{e}\).

b) Hypebol (H): \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), \(c = \sqrt {{a^2} + {b^2}} \)

+ Tâm sai của hypebol: \(e = \frac{c}{a}\)

+ Tiêu điểm \({F_1}( - c;0),{F_2}(c;0)\)

+ Đường chuẩn: \({\Delta _1}:x =  - \frac{a}{e}\) và \({\Delta _2}:x = \frac{a}{e}\).

c) Parabol (P)  \({y^2} = 2px\)

+ Tâm sai \(e = 1\)

+ Tiêu điểm \(F(\frac{p}{2};0)\)

+ Đường chuẩn: \(\Delta :x =  - \frac{p}{2}\)

Lời giải chi tiết

a) Elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{7} = 1\), suy ra \(c = \sqrt {{a^2} - {b^2}}  = \sqrt 2 \)

+ Tâm sai của elip: \(e = \frac{c}{a} = \frac{{\sqrt 2 }}{3}\)

+ Tiêu điểm \({F_1}( - \sqrt 2 ;0),{F_2}(\sqrt 2 ;0)\)

+ Đường chuẩn: \({\Delta _1}:x =  - \frac{{9\sqrt 2 }}{2}\) và \({\Delta _2}:x = \frac{{9\sqrt 2 }}{2}\).

b) Hypebol (H): \(\frac{{{x^2}}}{{15}} - \frac{{{y^2}}}{{10}} = 1\), \(c = \sqrt {{a^2} + {b^2}}  = 5\)

+ Tâm sai của hypebol: \(e = \frac{c}{a} = 3\)

+ Tiêu điểm \({F_1}( - 5;0),{F_2}(5;0)\)

+ Đường chuẩn: \({\Delta _1}:x =  - \frac{{\sqrt {15} }}{3}\) và \({\Delta _2}:x = \frac{{\sqrt {15} }}{3}\).

c) Parabol (P): \({y^2} = x\), suy ra \(p = \frac{1}{2}\)

+ Tâm sai \(e = 1\)

+ Tiêu điểm \(F(\frac{1}{4};0)\)

+ Đường chuẩn: \(\Delta :x =  - \frac{1}{4}\)

 

 


Bình chọn:
3.8 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí