Câu 13 trang 106 SGK Đại số và Giải tích 11 Nâng cao


Hãy xét tính tăng

Lựa chọn câu để xem lời giải nhanh hơn

Hãy xét tính tăng, giảm của các dãy số sau:

LG a

Dãy số (un) với \({u_n} = {n^3} - 3{n^2} + 5n - 7\)

Phương pháp giải:

Xét hiệu un+1 – un và so sánh với 0.

Lời giải chi tiết:

Ta có:

\(\eqalign{
& {u_{n + 1}} - {u_n} \cr&= {\left( {n + 1} \right)^3} - 3{\left( {n + 1} \right)^2} + 5\left( {n + 1} \right) - 7\cr& - \left( {{n^3} - 3{n^2} + 5n - 7} \right) \cr 
& = {n^3} + 3{n^2} + 3n + 1 \cr&- 3\left( {{n^2} + 2n + 1} \right) + 5n + 5 - 7\cr& - {n^3} + 3{n^2} - 5n + 7\cr&= 3{n^2} - 3n + 3 \cr& = 3n\left( {n - 1} \right) + 3> 0,\forall n \in \mathbb N^* \cr} \)

\( \Rightarrow {u_{n + 1}} > {u_n} \Rightarrow \left( {{u_n}} \right)\) là dãy số tăng.

LG b

Dãy số (xn) với  \({x_n} = {{n + 1} \over {{3^n}}}\)

Phương pháp giải:

Xét tỉ số \({{{x_n}} \over {{x_{n + 1}}}}\) và so sánh với 1.

Lời giải chi tiết:

Ta có:

\(\eqalign{
& {{{x_n}} \over {{x_{n + 1}}}} = {{n + 1} \over {{3^n}}}.{{{3^{n + 1}}} \over {n + 2}} \cr&= {{3\left( {n + 1} \right)} \over {n + 2}} = {{3n + 3} \over {n + 2}} > 1\;\forall n  \in \mathbb N^*\cr&\text{vì } \,3n + 3 > n + 2\;\forall n  \in \mathbb N^*  \cr 
& \Rightarrow {x_n} > {x_{n + 1}} \cr} \)

\(⇒ (x_n)\) là dãy số giảm.

LG c

Dãy số (an) với  \({a_n} = \sqrt {n + 1} - \sqrt n \)

Phương pháp giải:

Viết lại công thức xác định an dưới dạng

\({a_n} = {1 \over {\sqrt {n + 1} + \sqrt n }}\) (sử dụng nhân chia liên hợp)

Tiếp theo, xét tỉ số \({{{a_n}} \over {{a_{n + 1}}}}\) và so sánh với 1.

Lời giải chi tiết:

Ta có:

\(\eqalign{
& {a_n} = \sqrt {n + 1} - \sqrt n \cr& = \frac{{\left( {\sqrt {n + 1}  - \sqrt n } \right)\left( {\sqrt {n + 1}  + \sqrt n } \right)}}{{\sqrt {n + 1}  + \sqrt n }} \cr&= \frac{{n + 1 - n}}{{\sqrt {n + 1}  + \sqrt n }}\cr&= {1 \over {\sqrt {n + 1} + \sqrt n }} \cr 
& {{{a_n}} \over {{a_{n + 1}}}} \cr&=\frac{1}{{\sqrt {n + 1}  + \sqrt n }}:\frac{1}{{\sqrt {n + 2}  + \sqrt {n + 1} }}\cr&= {{\sqrt {n + 2} + \sqrt {n + 1} } \over {\sqrt {n + 1} + \sqrt n }} > 1 \cr 
& \Rightarrow {a_n} > {a_{n + 1}} \cr} \)

⇒ \((a_n)\) là dãy số giảm.

 Loigiaihay.com


Bình chọn:
3.8 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí