Bài 6 trang 72 SGK Toán 11 tập 1 - Cánh Diều>
Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số: C(x) = 50 000 + 105x. a) Tính chi phí trung bình (overline C left( x right)) để sản xuất một sản phẩm. b) Tính (mathop {lim }limits_{x to + infty } overline C left( x right)) và cho biết ý nghĩa của kết quả.
Đề bài
Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số: C(x) = 50 000 + 105x.
a) Tính chi phí trung bình \(\overline C \left( x \right)\) để sản xuất một sản phẩm.
b) Tính \(\mathop {\lim }\limits_{x \to + \infty } \overline C \left( x \right)\) và cho biết ý nghĩa của kết quả.
Phương pháp giải - Xem chi tiết
Tính giới hạn bằng phương pháp chia cả tử và mẫu cho \({x^n}\), với n là số mũ cao nhất trong biểu thức.
Lời giải chi tiết
a) \(\overline C \left( x \right) = \frac{{C\left( x \right)}}{x} = \frac{{50000 + 105x}}{x}\)
b) \(\mathop {\lim }\limits_{x \to + \infty } \overline C \left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{50000 + 105x}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\left( {\frac{{50000}}{x} + 105} \right)}}{x}\)
\(= \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{50000}}{x} + 105} \right) = 0 + 105 = 105\).
Vậy khi số sản phẩm càng lớn thì chi phí trung bình để sản xuất một sản phẩm tối đa là 105 (nghìn đồng).
Các bài khác cùng chuyên mục





Danh sách bình luận