Bài 6 trang 65 SGK Toán 11 tập 1 - Cánh Diều


Gọi C là nửa đường tròn đường kính AB = 2R, C1 là đường gồm hai nửa đường tròn đường kính (frac{{AB}}{2},) C2 là đường gồm bốn nửa đường tròn đường kính (frac{{AB}}{4},...) Cn là đường gồm 2n nửa đường tròn đường kính (frac{{AB}}{{{2^n}}},...) (Hình 4). Gọi pn là độ dài của Cn, Sn là diện tích hình phẳng giới hạn bởi Cn và đoạn thẳng AB. a) Tính pn, Sn. b) Tìm giới hạn của các dãy số (pn) và (Sn).

Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Gọi C là nửa đường tròn đường kính AB = 2R, C1  là đường gồm hai nửa đường tròn đường kính \(\frac{{AB}}{2},\), C2  là đường gồm bốn nửa đường tròn đường kính \(\frac{{AB}}{4},...\) 

Gọi pn  là độ dài của Cn, Sn  là diện tích hình phẳng giới hạn bởi Cn  và đoạn thẳng AB. 

a) Tính pn, Sn

b) Tìm giới hạn của các dãy số (pn) và (Sn). 

Phương pháp giải - Xem chi tiết

Chu vi hình tròn \(C = \pi d\)

Diện tích hình tròn \(S = \pi {R^2}\)

Lời giải chi tiết

a) Vì Cn là nửa đường tròn đường kính \(\frac{{AB}}{{{2^n}}}\) nên ta có \({p_n} = \frac{1}{2}{.2^n}.\frac{{AB}}{{{2^n}}}.\pi  = {2^n}.\frac{R}{{{2^n}}}.\pi  = \pi R\)

Đường kính \(\frac{{AB}}{{{2^n}}} = \frac{{2R}}{{{2^n}}}\) nên bánh kính \(\frac{R}{{{2^n}}}\)

\({S_n} = {2^n}.{\left( {\frac{R}{{{2^n}}}} \right)^2}.\frac{\pi }{2} = \frac{{\pi {R^2}}}{2}.\frac{1}{{{2^n}}} = \frac{{\pi {R^2}}}{{{2^{n + 1}}}}\)

b)  \(\begin{array}{l}\lim {p_n} = \lim \left( {\pi R} \right) = \pi R\\\lim {S_n} = \lim \frac{{\pi {R^2}}}{{{2^{n + 1}}}} = \lim \left[ {\frac{{\pi {R^2}}}{2}.{{\left( {\frac{1}{2}} \right)}^n}} \right] = \lim \frac{{\pi {R^2}}}{2}.\lim {\left( {\frac{1}{2}} \right)^n} = 0\end{array}\)


Bình chọn:
3.6 trên 5 phiếu
  • Bài 5 trang 65 SGK Toán 11 tập 1 - Cánh Diều

    Có 1 kg chất phóng xạ độc hại. Biết rằng, cứ sau một khoảng thời gian T= 24 000 năm thì một nửa số chất phóng xạ này bị phân rã thành chất khác không độc hại đối với sức khỏe của con người (T được gọi là chu kì bán rã). (Nguồn: Đại số và Giải tích 11, NXBGD Việt Nam, 2021) Gọi ({u_n}) là khối lượng chất phóng xạ còn lại sau chu kì thứ n. a) Tìm số hạng tổng quát ({u_n}) của dãy số (left( {{u_n}} right)). b) Chứng minh rằng (left( {{u_n}} right)) có giới hạn là 0. c) Từ kết qu

  • Bài 4 trang 65 SGK Toán 11 tập 1 - Cánh Diều

    Từ hình vuông có độ dài cạnh bằng 1, người ta nối các trung điểm của cạnh hình vuông để tạo ra hình vuông mới như Hình 3. Tiếp tục quá trình này đến vô hạn. a) Tính diện tích Sn của hình vuông được tạo thành ở bước thứ n; b) Tính tổng diện tích của tất cả các hình vuông được tạo thành.

  • Bài 3 trang 65 SGK Toán 11 tập 1 - Cánh Diều

    a) Tính tổng của cấp số nhân lùi vô hạn (left( {{u_n}} right),) với ({u_1} = frac{2}{3},q = - frac{1}{4}.) b) Biểu diễn số thập phân vô hạn tuần hoàn 1,(6) dưới dạng phân số.

  • Bài 2 trang 65 SGK Toán 11 tập 1 - Cánh Diều

    Tính các giới hạn sau: a) (lim frac{{5n + 1}}{{2n}};) b) (lim frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}};) c) (lim frac{{sqrt {{n^2} + 5n + 3} }}{{6n + 2}};) d) (lim left( {2 - frac{1}{{{3^n}}}} right);) e) (lim frac{{{3^n} + {2^n}}}{{{{4.3}^n}}};) g) (lim frac{{2 + frac{1}{n}}}{{{3^n}}}.)

  • Bài 1 trang 64 SGK Toán 11 tập 1 - Cánh diều

    Cho hai dãy số \(\left( {{u_n}} \right),\left( {{v_n}} \right)\) với \({u_n} = 3 + \frac{1}{n};{v_n} = 5 - \frac{2}{{{n^2}}}.\) Tính các giới hạn sau: a) \(\lim {u_n},\lim {v_n}.\) b) \(\lim \left( {{u_n} + {v_n}} \right),\lim \left( {{u_n} - {v_n}} \right),\lim \left( {{u_n}.{v_n}} \right),\lim \frac{{{u_n}}}{{{v_n}}}.\)

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí