Bài 6 trang 65 SGK Toán 11 tập 1 - Cánh Diều>
Gọi C là nửa đường tròn đường kính AB = 2R, C1 là đường gồm hai nửa đường tròn đường kính (frac{{AB}}{2},) C2 là đường gồm bốn nửa đường tròn đường kính (frac{{AB}}{4},...) Cn là đường gồm 2n nửa đường tròn đường kính (frac{{AB}}{{{2^n}}},...) (Hình 4). Gọi pn là độ dài của Cn, Sn là diện tích hình phẳng giới hạn bởi Cn và đoạn thẳng AB. a) Tính pn, Sn. b) Tìm giới hạn của các dãy số (pn) và (Sn).
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Gọi C là nửa đường tròn đường kính AB = 2R, C1 là đường gồm hai nửa đường tròn đường kính \(\frac{{AB}}{2},\), C2 là đường gồm bốn nửa đường tròn đường kính \(\frac{{AB}}{4},...\)
Gọi pn là độ dài của Cn, Sn là diện tích hình phẳng giới hạn bởi Cn và đoạn thẳng AB.
a) Tính pn, Sn.
b) Tìm giới hạn của các dãy số (pn) và (Sn).
Phương pháp giải - Xem chi tiết
Chu vi hình tròn \(C = \pi d\)
Diện tích hình tròn \(S = \pi {R^2}\)
Lời giải chi tiết
a) Vì Cn là nửa đường tròn đường kính \(\frac{{AB}}{{{2^n}}}\) nên ta có \({p_n} = \frac{1}{2}{.2^n}.\frac{{AB}}{{{2^n}}}.\pi = {2^n}.\frac{R}{{{2^n}}}.\pi = \pi R\)
Đường kính \(\frac{{AB}}{{{2^n}}} = \frac{{2R}}{{{2^n}}}\) nên bánh kính \(\frac{R}{{{2^n}}}\)
\({S_n} = {2^n}.{\left( {\frac{R}{{{2^n}}}} \right)^2}.\frac{\pi }{2} = \frac{{\pi {R^2}}}{2}.\frac{1}{{{2^n}}} = \frac{{\pi {R^2}}}{{{2^{n + 1}}}}\)
b) \(\begin{array}{l}\lim {p_n} = \lim \left( {\pi R} \right) = \pi R\\\lim {S_n} = \lim \frac{{\pi {R^2}}}{{{2^{n + 1}}}} = \lim \left[ {\frac{{\pi {R^2}}}{2}.{{\left( {\frac{1}{2}} \right)}^n}} \right] = \lim \frac{{\pi {R^2}}}{2}.\lim {\left( {\frac{1}{2}} \right)^n} = 0\end{array}\)
- Bài 5 trang 65 SGK Toán 11 tập 1 - Cánh Diều
- Bài 4 trang 65 SGK Toán 11 tập 1 - Cánh Diều
- Bài 3 trang 65 SGK Toán 11 tập 1 - Cánh Diều
- Bài 2 trang 65 SGK Toán 11 tập 1 - Cánh Diều
- Bài 1 trang 64 SGK Toán 11 tập 1 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Hình lăng trụ đứng, hình chóp đều, thể tích của một số hình khối - Toán 11 Cánh diều
- Lý thuyết Khoảng cách - Toán 11 Cánh diều
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Cánh diều
- Lý thuyết Góc giữa đường thẳng và mặt phẳng, góc nhị diện - Toán 11 Cánh diều
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều
- Lý thuyết Hình lăng trụ đứng, hình chóp đều, thể tích của một số hình khối - Toán 11 Cánh diều
- Lý thuyết Khoảng cách - Toán 11 Cánh diều
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Cánh diều
- Lý thuyết Góc giữa đường thẳng và mặt phẳng, góc nhị diện - Toán 11 Cánh diều
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều