Bài 53 trang 108 SBT Hình học 10 Nâng cao


Giải bài tập Bài 53 trang 108 SBT Hình học 10 Nâng cao

Quảng cáo

Đề bài

Cho đường tròn \((C): {x^2} + {y^2} - 2x + 6y + 5 = 0\) và đường thẳng \(d: 2x+y-1=0\). Viết phương trình tiếp tuyến \(\Delta \) của \((C)\), biết \(\Delta \) song song với \(d\). Tìm tọa độ tiếp điểm.

Lời giải chi tiết

\((C)\) có tâm \(I(1 ; -3)\), bán kính  \(R = \sqrt {{1^2} + {3^2} - 5}  = \sqrt 5 \).

\(\Delta //d \Rightarrow   \Delta \) có phương trình : \(2x + y + m = 0  (m \ne  - 1)\).

\(\Delta \) tiếp xúc với \((C)\)

\( \Leftrightarrow   d(I ; \Delta ) = R  \\  \Leftrightarrow    \dfrac{{|2 - 2 + m|}}{{\sqrt {{2^2} + {1^2}} }} = \sqrt 5  \\   \Leftrightarrow   |m - 1| = 5  \\  \Leftrightarrow   \left[ \begin{array}{l}m = 6\\m =  - 4.\end{array} \right.\)

Có hai tiếp tuyến cần tìm là :

\(\begin{array}{l}{\Delta _1}:  2x + y + 6 = 0;\\{\Delta _2}:  2x + y - 4 = 0.\end{array}\)

Tọa độ tiếp điểm \(M\) của \({\Delta _1}\) với \((C)\) là nghiệm của hệ

\(\left\{ \begin{array}{l}2x + y + 6 = 0\\{x^2} + {y^2} - 2x + 6y + 5 = 0\end{array} \right. \)

\(   \Leftrightarrow   \left\{ \begin{array}{l}x =  - 1\\y =  - 4\end{array} \right.\). Vậy \(M=(-1 ; -4).\)

Tọa độ tiếp điểm N của \({\Delta _2}\) với \((C)\) là nghiệm của hệ

\(\left\{ \begin{array}{l}2x + y - 4 = 0\\{x^2} + {y^2} - 2x + 6y + 5 = 0\end{array} \right. \)

\(   \Leftrightarrow   \left\{ \begin{array}{l}x = 3\\y =  - 2\end{array} \right.\). Vậy \(N=(3 ; -2).\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!