Bài 5 trang 120 SGK Toán 11 tập 1 - Cánh Diều>
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, BD. Điểm P thuộc cạnh AC sao cho PA = 2PC
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, BD. Điểm P thuộc cạnh AC sao cho PA = 2PC
a) Xác định giao điểm E của đường thẳng MP với mặt phẳng (BCD)
b) Xác định giao điểm Q của đường thẳng CD với mặt phẳng (MNP)
c) Xác định giao tuyến của mặt phẳng (ACD) với mặt phẳng (MNP).
d) Gọi I là giao điểm của MQ và NP, G là trọng tâm của tam giác ABD. Chứng minh rằng C, I, G thẳng hàng.
Phương pháp giải - Xem chi tiết
a,b, Tìm giao điểm của đường thẳng a và mặt phẳng (P) ta làm như sau:
+ Tìm mặt phẳng (Q) chứa a.
+ Tìm giao tuyến d của (P) và (Q).
+ Giao tuyến d cắt đường thẳng a tại I.
Suy ra, I là giao điểm của đường thẳng a và mặt phẳng (P).
c, Tìm 2 điểm cùng thuộc 2 mặt phẳng đó. Đường thẳng đi qua 2 điểm đó chính là giao tuyến của 1 mặt phẳng.
d, Chứng minh 3 điểm cùng thuộc 1 đường thẳng.
Lời giải chi tiết
a) Trong mp(ABC), kéo dài MP cắt BC tại E. Nối AE, DE.
Ta có: MP ∩ BC = {E};
BC ⊂ (BCD)
Do đó MP ∩ (BCD) = {E}.
b) Nối NE, NE cắt CD tại Q.
Ta có: CD ∩ NE = {Q};
NE ⊂ (MNP)
Do đó CD ∩ (MNP) = {Q}.
c) Ta có: P ∈ AC, mà AC ⊂ (ACD) nên P ∈ (ACD);
Mà P ∈ (MNP) nên P là giao điểm của (ACD) và (MNP).
Lại có Q ∈ CD và CD ⊂ (ACD) nên Q ∈ (ACD);
Mà Q ∈ (MNP) nên Q là giao điểm của (ACD) và (MNP).
Do đó PQ là giao tuyến của hai mặt phẳng (ACD) và (MNP).
d) Do G là trọng tâm của tam giác ABD nên hai đường trung tuyến DM, AN của tam giác cùng đi qua G.
Ta có: G ∈ AN mà AN ⊂ (ANC) nên G ∈ (ANC);
G ∈ DM mà DM ⊂ (MDC) nên G ∈ (MDC).
Do đó G là giao điểm của hai mặt phẳng (ANC) và (MDC).
Lại có: C ∈ (ANC) và C ∈ (MDC) nên C cũng là giao điểm của hai mặt phẳng (ANC) và (MDC).
Vậy GC là giao tuyến của hai mặt phẳng (ANC) và (MDC).
Mặt khác, I là giao điểm của MQ và NP nên I ∈ MQ và I ∈ NP.
Vì I ∈ MQ mà MQ ⊂ (MDC) nên I ∈ (MDC)
Vì I ∈ NP mà NP ⊂ (ANC) nên I ∈ (ANC)
Do đó giao tuyến GC của hai mặt phẳng (ANC) và (MDC) đi qua điểm I.
Vậy ba điểm C, I, G thẳng hàng.
- Bài 6 trang 120 SGK Toán 11 tập 1 - Cánh Diều
- Bài 7 trang 120 SGK Toán 11 tập 1 - Cánh Diều
- Bài 8 trang 120 SGK Toán 11 tập 1 - Cánh Diều
- Bài 9 trang 120 SGK Toán 11 tập 1 - Cánh Diều
- Bài 10 trang 120 SGK Toán 11 tập 1 - Cánh Diều
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Hình lăng trụ đứng, hình chóp đều, thể tích của một số hình khối - Toán 11 Cánh diều
- Lý thuyết Khoảng cách - Toán 11 Cánh diều
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Cánh diều
- Lý thuyết Góc giữa đường thẳng và mặt phẳng, góc nhị diện - Toán 11 Cánh diều
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều
- Lý thuyết Hình lăng trụ đứng, hình chóp đều, thể tích của một số hình khối - Toán 11 Cánh diều
- Lý thuyết Khoảng cách - Toán 11 Cánh diều
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Cánh diều
- Lý thuyết Góc giữa đường thẳng và mặt phẳng, góc nhị diện - Toán 11 Cánh diều
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều