Bài 3.15 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức>
Một bảng xếp hạng đã tính điểm chuẩn hóa cho chi số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau: Điểm Dưới 20 (left[ {20;30} right)) (left[ {30;40} right)) (left[ {40;60} right)) (left[ {60;80} right)) (left[ {80;100} right)) Số trường (4) (19) (6) (2) (3) (1) Xác định điểm ngưỡng để đưa ra danh sách 25% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam.
Đề bài
Một bảng xếp hạng đã tính điểm chuẩn hóa cho chi số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau:
Xác định điểm ngưỡng để đưa ra danh sách 25% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Xác định điểm ngưỡng thuộc tứ phân vị thứ ba
Để tính tứ phân vị thứ ba \({Q_3}\) của mẫu số liệu ghép nhóm, trước hết ta xác định nhóm chứa \({Q_3}\). Giả sử đó là nhóm thứ \(p:\left[ {{a_p};\;{a_{p + 1}}} \right)\). Khi đó,
\({Q_3} = {a_p} + \frac{{\frac{{3n}}{4} - \left( {{m_1} + \ldots + {m_{p - 1}}} \right)}}{{{m_p}}}.\left( {{a_{p + 1}} - {a_p}} \right)\).
Trong đó, n là cỡ mẫu, \({m_p}\) là tần số nhóm p, với \(p = 1\) ta quy ước \({m_1} + \ldots + {m_{p - 1}} = 0\).
Lời giải chi tiết
Điểm ngưỡng để đưa ra danh sách 25% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là tứ phân vị thứ ba.
Ta có: cỡ mẫu n = 35.
Tứ phân vị thứ ba \({Q_3}\) là \({x_{27}}\). Do \({x_{27}}\) đều thuộc nhóm \(\left[ {30;40} \right)\) nên nhóm náy chứa \({Q_3}\). Do đó,
\(p = 3;\;\;{a_3} = 30;\;\;{m_3} = 6;\;\;{m_1} + {m_2} = 4 + 19 = 23;\;{a_4} - {a_3} = 10\)
Ta có: \({Q_3} = 30 + \frac{{\frac{{3 \times 35}}{4} - 23}}{6} \times 10 = 35,42\).
- Bài 3.14 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 3.13 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 3.12 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 3.11 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 3.10 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức