Bài 2.2 trang 46 SGK Toán 11 tập 1 - Kết nối tri thức>
Dãy số (left( {{u_n}} right))cho bởi hệ thức truy hồi: ({u_1} = 1,;;;{u_n} = n.{u_{n - 1}}) với (n ge 2) a) Viết năm số hạng đầu của dãy số. b) Dự đoán công thức số hạng tổng quát ({u_n}).
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Dãy số \(\left( {{u_n}} \right)\)cho bởi hệ thức truy hồi: \({u_1} = 1,\;\;\;{u_n} = n.{u_{n - 1}}\) với \(n \ge 2\)
a) Viết năm số hạng đầu của dãy số.
b) Dự đoán công thức số hạng tổng quát \({u_n}\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Thay n tương ứng với các thứ tự dãy số.
Dựa vào tính chất của giải để dự đoán được công thức số hạng tổng quát.
Lời giải chi tiết
a) \({u_1} = 1\)
\( \Rightarrow {u_2} = 2.1 = 2\)
\( \Rightarrow {u_3} = 3.2 = 6\)
\( \Rightarrow {u_4} = 4.6 = 24\)
\( \Rightarrow {u_5} = 5.24 = 120\)
b)
Ta có:
\({u_2} = 2 = 2.1 \)
\({u_3} = 6= 1.2.3 \)
\({u_4} = 24 = 1.2.3.4\)
\({u_5} = 120 = 1.2.3.4.5\)
\( \Rightarrow {u_n} = 1.2.3....n = n!\).
- Bài 2.3 trang 46 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.4 trang 46 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.5 trang 46 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.6 trang 46 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.7 trang 47 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức