Bài 2 trang 47 SGK Toán 11 tập 2 - Cánh Diều>
Tìm tập xác định của các hàm số:
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Trong các hàm số sau, hàm số nào đồng biến, hàm số nào nghịch biến trên khoảng xác định của hàm số đó? Vì sao?
a) \(y = {\left( {\frac{{\sqrt 3 }}{2}} \right)^x}\)
b) \(y = {\left( {\frac{{\sqrt[3]{{26}}}}{3}} \right)^x}\)
c) \(y = {\log _\pi }x\)
Phương pháp giải - Xem chi tiết
Dựa vào hệ số của hàm để xác định hàm đồng biến, nghịch biến
Lời giải chi tiết
a) Do \(0 < \frac{{\sqrt 3 }}{2} < 1\) => Hàm số \(y = {\left( {\frac{{\sqrt 3 }}{2}} \right)^x}\) nghịch biến trên tập xác định của hàm số
b) Do \(0 < \frac{{\sqrt[3]{{26}}}}{3} < 1\) => Hàm số \(y = {\left( {\frac{{\sqrt[3]{{26}}}}{3}} \right)^x}\) nghịch biến trên tập xác định của hàm số
c) Do \(\pi > 1\) => Hàm số \(y = {\log _\pi }x\) đồng biến trên tập xác định của hàm số
d) Do \(0 < \frac{{\sqrt {15} }}{4} < 1\) => Hàm số \(y = {\log _{\frac{{\sqrt {15} }}{4}}}x\) nghịch biến trên tập xác định của hàm số
- Bài 3 trang 47 SGK Toán 11 tập 2 - Cánh Diều
- Bài 4 trang 47 SGK Toán 11 tập 2 - Cánh Diều
- Bài 5 trang 47 SGK Toán 11 tập 2 - Cánh Diều
- Bài 6 trang 47 SGK Toán 11 tập 2 - Cánh Diều
- Bài 7 trang 47 SGK Toán 11 tập 2 - Cánh Diều
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Hình lăng trụ đứng, hình chóp đều, thể tích của một số hình khối - Toán 11 Cánh diều
- Lý thuyết Khoảng cách - Toán 11 Cánh diều
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Cánh diều
- Lý thuyết Góc giữa đường thẳng và mặt phẳng, góc nhị diện - Toán 11 Cánh diều
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều
- Lý thuyết Hình lăng trụ đứng, hình chóp đều, thể tích của một số hình khối - Toán 11 Cánh diều
- Lý thuyết Khoảng cách - Toán 11 Cánh diều
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Cánh diều
- Lý thuyết Góc giữa đường thẳng và mặt phẳng, góc nhị diện - Toán 11 Cánh diều
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều