Giải bài 2.3 trang 25 SGK Toán 10 tập 1 – Kết nối tri thức>
Ông An muốn thuê một chiếc ô tô (có lái xe) trong một tuần. Giá thuê xe được cho như bảng sau:
Đề bài
Ông An muốn thuê một chiếc ô tô (có lái xe) trong một tuần. Giá thuê xe được cho như bảng sau:
a) Gọi x và y lần lượt là số kilômét ông An đi trong các ngày từ thứ Hai đến thứ Sáu và trong hai ngày cuối tuần. Viết bất phương trình biểu thị mối liên hệ giữa x và y sao cho tổng số tiền ông An phải trả không quá 14 triệu đồng.
b) Biểu diễn miền nghiệm của bất phương trình ở câu a trên mặt phẳng toạ độ.
Phương pháp giải - Xem chi tiết
a) Biểu diễn số tiền ông An phải trả theo số kilômét. Số tiền không quá 14 triệu tức là nhỏ hơn hoặc bằng 14 triệu
b) Ta biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn \(ax + by \le c\) như sau:
Bước 1: Vẽ đường thẳng (nét liền).
Bước 2: Lấy một điểm bất kì không thuộc d trên mặt phẳng rồi thay vào biểu thức ax+b. Xác định c có bằng 0 hay không, nếu c khác 0 thì ta lấy điểm để thay vào là gốc O(0;0).
Nếu O thỏa mãn bất phương trình thì miền nghiệm của bất phương trình đã cho là nửa mặt phẳng bờ d chứa điểm đã lấy.
Lời giải chi tiết
a)
Ta có 14 triệu = 14 000 (nghìn đồng)
Phí cố định là: 900.5 + 1500.2 = 7500 (nghìn đồng)
Phí tính theo quãng đường là:
x km trong các ngày từ thứ Hai đến thứ Sáu là 8x (nghìn đồng)
y km trong 2 cuối tuần là 10y (nghìn đồng)
Tổng số tiền ông An phải trả là 8x+10y +7500 (nghìn đồng)
Vì số tiền không quá 14 triệu đồng nên ta có :
\(\begin{array}{l}8x + 10y +7500 \le 14000\\ \Leftrightarrow 4x + 5y \le 3250\end{array}\)
Vậy bất phương trình cần tìm là \(4x + 5y \le 3250\)
b)
Bước 1: Vẽ đường thẳng \(4x + 5y = 3250\)(nét liền)
Bước 2: Thay tọa độ điểm O(0;0) vào biểu thức 4x+5y ta được:
4.0+5.0=0<3250
=> Điểm O thuộc miền nghiệm
=> Miền nghiệm là nửa mặt phẳng bờ là đường thẳng \(4x + 5y = 3250\) và chứa gốc tọa độ và (x;y) nằm trong miền tam giác OAB kể cả đoạn AB.
- Giải bài 2.2 trang 25 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 2.1 trang 25 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải mục 2 trang 22, 23 SGK Toán 10 tập 1 - Kết nối tri thức
- Giải mục 1 trang 22, 23 SGK Toán 10 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 22 SGK Toán 10 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức