Giải SBT toán hình học và đại số 11 nâng cao
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các ve..
Câu 10 trang 115 Sách bài tập Hình học 11 Nâng cao>
Giải bài tập Câu 10 trang 115 Sách bài tập Hình học 11 Nâng cao
Đề bài
Cho ba tia Ox, Oy, Oz không đồng phẳng.
a) Đặt \(\widehat {xOy} = \alpha ,\widehat {yOz} = \beta ,\widehat {{\rm{zOx}}} = \gamma \) . Chứng minh rằng:
\(\cos \alpha + \cos \beta + \cos \gamma > - {3 \over 2}\)
b) Gọi \(O{x_1},O{y_1},O{z_1}\) lần lượt là các tia phân giác của các góc xOy, yOz, zOx. Chứng minh rằng nếu Ox1 và Oy1 vuông góc với nhau thì Oz1 vuông góc với cả Ox1 và Oy1.
Lời giải chi tiết
Lấy \({E_1},{E_2},{E_3}\) lần lượt thuộc các tia Ox, Oy, Oz sao cho \(O{E_1} = O{E_2} = O{E_3}\).
Đặt \(\overrightarrow {O{E_1}} = \overrightarrow {{e_1}} ,\overrightarrow {O{E_2}} = \overrightarrow {{e_2}} ,\overrightarrow {O{E_3}} = \overrightarrow {{e_3}} \).
a) Do ba tia Ox, Oy, Oz không đồng phẳng nên\({\left( {{{\overrightarrow e }_1} + {{\overrightarrow e }_2} + {{\overrightarrow e }_3}} \right)^2} > 0\),
tức là
\(\eqalign{ & \overrightarrow e _1^2 + \overrightarrow e _2^2 + \overrightarrow e _3^2 \cr&+ 2\left( {{{\overrightarrow e }_1}.{{\overrightarrow e }_2} + {{\overrightarrow e }_2}.{{\overrightarrow e }_3} + {{\overrightarrow e }_3}.\overrightarrow {{e_1}} } \right) > 0 \cr & \Leftrightarrow 3{\rm{O}}E_1^2 + 2OE_1^2\left( {\cos \alpha + \cos \beta + \cos \gamma } \right) > 0 \cr} \)
Vậy \(\cos \alpha + cos\beta + cos\gamma > - {3 \over 2}\)
Dễ thấy
\(\eqalign{ & \overrightarrow {O{E_1}} + \overrightarrow {O{E_2}} //O{x_1} \cr & \overrightarrow {O{E_2}} + \overrightarrow {O{E_3}} //O{y_1} \cr & \overrightarrow {O{E_3}} + \overrightarrow {O{E_1}} //O{z_1} \cr & O{x_1} \bot O{y_1} \Leftrightarrow \left( {\overrightarrow {O{E_1}} + \overrightarrow {O{E_2}} } \right)\left( {\overrightarrow {O{E_2}} + \overrightarrow {O{E_3}} } \right) = 0 \cr} \)
hay \({\overrightarrow {O{E_2}} ^2} + \overrightarrow {O{E_1}} .\overrightarrow {O{E_2}} + \overrightarrow {O{E_1}} .\overrightarrow {O{E_3}} + \overrightarrow {O{E_2}} .\overrightarrow {O{E_3}} = 0\)
Ta có:
\(\eqalign{ & \left( {\overrightarrow {O{E_1}} + \overrightarrow {O{E_2}} } \right)\left( {\overrightarrow {O{E_3}} + \overrightarrow {O{E_1}} } \right) \cr & = {\overrightarrow {O{E_1}} ^2} + \overrightarrow {O{E_1}} .\overrightarrow {O{E_2}} + \overrightarrow {O{E_2}} .\overrightarrow {O{E_3}} + \overrightarrow {O{E_1}} .\overrightarrow {O{E_3}} \cr} \)
\(= 0\)
Vậy \(O{x_1} \bot O{z_1}\)
Tương tự, ta cũng có \(O{y_1} \bot O{z_1}\)
Loigiaihay.com
Các bài khác cùng chuyên mục




