Lý thuyết Phép cộng và phép trừ đa thức SGK Toán 8 - Kết nối tri thức


Cộng (hay trừ) hai đa thức tức là thu gọn đa thức

Cộng (hay trừ) hai đa thức tức là thu gọn đa thức nhận được sau khi nối hai đa thức đã cho bởi dấu “+” (hay dấu “–”)

Phép cộng đa thức cũng có các tính chất giao hoán và kết hợp tương tự như phép cộng các số.

+ Giao hoán: A + B = B + A

+ Kết hợp: (A + B) + C = A + (B + C)

Ví dụ:

Cho 2 đa thức 

\(A = {x^2}-2y + xy + 1\)

          \(B = {x^2} + y - {x^2}{y^2} - 1\)

Tìm đa thức C = A +B

\(\begin{array}{l}C = A + B\\C = \left( {{x^2} - 2y + xy + 1} \right) + \left( {{x^2} + y - {x^2}{y^2} - 1} \right)\\C = {x^2} - 2y + xy + 1 + {x^2} + y - {x^2}{y^2} - 1\\C = ({x^2} + {x^2}) + \left( { - 2y + y} \right) + xy - {x^2}{y^2} + (1 - 1)\\C = 2{x^2} - y + xy - {x^2}{y^2}\end{array}\)

Vậy đa thức \(C = 2{x^2}-y + xy - {x^2}{y^2}\)


Bình chọn:
4 trên 13 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí