Lý thuyết Dãy tỉ số bằng nhau Toán 7 - Kết nối tri thức


Tính chất dãy tỉ số bằng nhau

Tổng hợp đề thi giữa kì 1 lớp 7 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Khoa học tự nhiên

I. Các kiến thức cần nhớ

Tính chất dãy tỉ số bằng nhau

* Ta có \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{{a + c}}{{b + d}} = \dfrac{{a - c}}{{b - d}}\)

* Từ dãy tỉ số bằng nhau \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f}\) ta suy ra:

\(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = \dfrac{{a + c + e}}{{b + d + f}} = \dfrac{{a - c + e}}{{b - d + f}}\)

Với điều kiện các tỉ số đều có nghĩa.

Ví dụ: \(\dfrac{{10}}{6} = \dfrac{5}{3} = \dfrac{{10 + 5}}{{6 + 3}} = \dfrac{{15}}{9}\)

\(\dfrac{{10}}{6} = \dfrac{5}{3} = \dfrac{{10 - 5}}{{6 -3}}\)

* Mở rộng

$\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{{ma + nc}}{{mb + nd}} = \dfrac{{ma - nc}}{{mb - nd}}$

Ví dụ:

\(\dfrac{{10}}{6} = \dfrac{5}{3} = \dfrac{{2.10 + 3.5}}{{2.6 + 3.3}} = \dfrac{{35}}{{21}}\)

Chú ý:

Khi nói các số \(x,\,y,\,z\) tỉ lệ với các số \(a,\,b,\,c\) tức là ta có \(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c}\). Ta cũng viết \(x:y:z = a:b:c\)

II. Các dạng toán thường gặp

Dạng 1: Tìm hai số $x;y$ biết tổng (hoặc hiệu) và tỉ số của chúng.

Phương pháp giải:

* Để tìm hai số \(x;y\) khi biết tổng $x + y = s$ và tỉ số \(\dfrac{x}{y} = \dfrac{a}{b}\) ta làm như sau

Ta có \(\dfrac{x}{y} = \dfrac{a}{b} \Rightarrow \dfrac{x}{a} = \dfrac{y}{b}\)

Áp dụng dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{{x + y}}{{a + b}} = \dfrac{s}{{a + b}}\)

Từ đó \(x = \dfrac{s}{{a + b}}.a;\,y = \dfrac{s}{{a + b}}.b\) .

* Để tìm hai số \(x;y\) khi biết hiệu $x - y = p$ và tỉ số \(\dfrac{x}{y} = \dfrac{a}{b}\) ta làm như sau

Ta có \(\dfrac{x}{y} = \dfrac{a}{b}\)\( \Rightarrow \dfrac{x}{a} = \dfrac{y}{b}\)

Áp dụng dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{{x - y}}{{a - b}} = \dfrac{p}{{a - b}}\)

Từ đó \(x = \dfrac{p}{{a - b}}.a;\)\(y = \dfrac{p}{{a - b}}.b\) .

Ví dụ: Tìm hai số \(x;y\) biết \(\frac{x}{3} = \frac{y}{5}\) và \(x + y =  - 32\)

Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{x}{3} = \frac{y}{5} = \frac{{x + y}}{{3 + 5}} = \frac{{ - 32}}{8} =  - 4\)

Do đó \(\frac{x}{3} =  - 4 \Rightarrow x = (-4).3 = - 12\)  và \(\frac{y}{5} =  - 4 \Rightarrow y = (-4).5 = - 20.\)

Vậy \(x =  - 12;y =  - 20.\)

Dạng 2: Chia một số thành các phần tỉ lệ với các số cho trước

Phương pháp:

Giả sử chia số \(P\) thành ba phần \(x,\,y,\,z\) tỉ lệ với các số \(a,b,c\), ta làm như sau:

\(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} = \dfrac{{x + y + z}}{{a + b + c}} = \dfrac{P}{{a + b + c}}\)

Từ đó \(x = \dfrac{P}{{a + b + c}}.a;\,y = \dfrac{P}{{a + b + c}}.b\); \(z = \dfrac{P}{{a + b + c}}.c\).

Dạng 3: Tìm hai số biết tổng và tỉ số của chúng

Phương pháp:

Tìm hai số \(x;\,y\) biết $x.y = P$ và \(\dfrac{x}{y} = \dfrac{a}{b}\)

Cách 1: Ta có \(\dfrac{x}{y} = \dfrac{a}{b} \Rightarrow \dfrac{x}{a} = \dfrac{y}{b}\)

Đặt \(\dfrac{x}{a} = \dfrac{y}{b} = k\) ta có \(x = ka;\,y = kb\)

Nên \(x.y = ka.kb = {k^2}ab = P \)\(\Rightarrow {k^2} = \dfrac{P}{{ab}}\)

Từ đó tìm được \(k\) sau đó tìm được \(x,y\).

Cách 2: Ta có \(\dfrac{x}{y} = \dfrac{a}{b}\)\( \Rightarrow \dfrac{{{x^2}}}{{xy}} = \dfrac{a}{b}\) hay \(\dfrac{{{x^2}}}{P} = \dfrac{a}{b} \)\(\Rightarrow {x^2} = \dfrac{{Pa}}{b}\)  từ đó tìm được \(x\) và \(y.\)

Dạng 4: Chứng minh đẳng thức từ một tỉ lệ thức cho trước.

Phương pháp:

Áp dụng tính chất tỉ lệ thức và tính chất dãy tỉ số bằng nhau.

Dạng 5: Bài toán về tỉ lệ thức

Phương pháp:

+ Xác định mối quan hệ giữa các yếu tố của đề bài

+ Lập được tỉ lệ thức

+ Áp dụng tính chất dãy tỉ số bằng nhau để giải bài toán.

 


Bình chọn:
4.2 trên 13 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí