Giải mục II trang 106, 107 SGK Toán 7 tập 1 - Cánh diều>
Cho định lí: “ Nếu hai góc đối đỉnh thì hai góc đó bằng nhau”. a) Vẽ hình minh họa nội dung định lí trên. b) Viết giả thiết và kết luận của định lí trên. c) Chứng tỏ định lí trên là đúng.
Hoạt động 3
Cho định lí:
“ Nếu hai góc đối đỉnh thì hai góc đó bằng nhau”.
a) Vẽ hình minh họa nội dung định lí trên.
b) Viết giả thiết và kết luận của định lí trên.
c) Chứng tỏ định lí trên là đúng.
Phương pháp giải:
Vẽ hình
Giả thiết là điều đề bài cho
Kết luận là điều cần chứng minh
Để chứng minh định lí, ta cần xuất phát từ giả thiết, định nghĩa, tính chất liên quan
Lời giải chi tiết:
a)
b)
c) Vì góc xOy và x’Oy’ là hai góc đối đỉnh nên Oy và Oy’ là hai tia đối nhau; Ox và Ox’ là hai tia đối nhau
\( \Rightarrow \widehat {xOy}\) và \(\widehat {xOy'}\) là hai góc kề bù; \(\widehat {xOy'}\) và \(\widehat {x'Oy'}\) là hai góc kề bù
\( \Rightarrow \widehat {xOy} + \widehat {xOy'} = 180^\circ \); \(\widehat {xOy'} + \widehat {x'Oy'} = 180^\circ \) ( tính chất 2 góc kề bù)
\( \Rightarrow \)\(\widehat {xOy} = \widehat {x'Oy'}\) (đpcm)
Luyện tập vận dụng 2
Chứng minh định lí: “ Nếu một đường thẳng cắt hai đường thẳng phân biệt và trong số các góc tạo thành có một cặp góc đồng vị bằng nhau thì các cặp góc so le trong bằng nhau”.
Phương pháp giải:
- Phần nằm giữa từ “ Nếu” và từ “ thì” là giả thiết
- Phần nằm sau từ “ thì” là kết luận
Để chứng minh định lí, ta cần xuất phát từ giả thiết, định nghĩa, tính chất liên quan.
Lời giải chi tiết:
Ta có: \(\widehat {{A_1}} = \widehat {{B_1}}\) (gt)
\(\widehat {{A_3}} = \widehat {{A_1}}\) (2 góc đối đỉnh)
\( \Rightarrow \widehat {{A_3}} = \widehat {{B_1}}\) ( cùng bằng \(\widehat {{A_1}}\))
Mà \(\widehat {{A_2}} + \widehat {{A_3}} = 180^\circ ;\widehat {{B_1}} + \widehat {{B_4}} = 180^\circ \) ( 2 góc kề bù)
\( \Rightarrow \widehat {{A_2}} = \widehat {{B_4}}\)
- Giải bài 1 trang 107 SGK Toán 7 tập 1 - Cánh diều
- Giải bài 2 trang 107 SGK Toán 7 tập 1 - Cánh diều
- Giải mục I trang 105, 106 SGK Toán 7 tập 1 - Cánh diều
- Giải câu hỏi khởi động trang 105 SGK Toán 7 tập 1 - Cánh diều
- Lý thuyết Định lí SGK Toán 7 Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục
- Tạo đồ dùng dạng hình lăng trụ đứng SGK Toán 7 Cánh diều tập 1
- Giải câu hỏi trang 39, 40 SGK Toán 7 Cánh diều tập 2
- Lý thuyết Trường hợp bằng nhau thứ ba của tam giác: góc-cạnh-góc SGK Toán 7 - Cánh diều
- Lý thuyết Trường hợp bằng nhau thứ hai của tam giác: cạnh-góc-cạnh SGK Toán 7 - Cánh diều
- Lý thuyết Trường hợp bằng nhau thứ nhất của tam giác: cạnh-cạnh-cạnh SGK Toán 7 - Cánh diều
- Tạo đồ dùng dạng hình lăng trụ đứng SGK Toán 7 Cánh diều tập 1
- Giải câu hỏi trang 39, 40 SGK Toán 7 Cánh diều tập 2
- Lý thuyết Trường hợp bằng nhau thứ ba của tam giác: góc-cạnh-góc SGK Toán 7 - Cánh diều
- Lý thuyết Trường hợp bằng nhau thứ hai của tam giác: cạnh-góc-cạnh SGK Toán 7 - Cánh diều
- Lý thuyết Trường hợp bằng nhau thứ nhất của tam giác: cạnh-cạnh-cạnh SGK Toán 7 - Cánh diều