Giải mục 2 trang 78, 79 SGK Toán 7 tập 1 - Kết nối tri thức>
Vẽ tam giác vuông ABC có A = 90°, AB = 3 cm, BC = 5 cm theo các bước sau: • Dùng thước thẳng có vạch chia vẽ đoạn thẳng AB = 3 cm. • Vẽ tia Ax vuông góc với AB và cung tròn tâm B bán kính 5 cm như Hình 4.51. Cung tròn cắt tia Ax tại điểm C. •Vẽ đoạn thẳng BC ta được tam giác ABC.
HĐ 4
Vẽ tam giác vuông ABC có A = 90°, AB = 3 cm, BC = 5 cm theo các bước sau:
• Dùng thước thẳng có vạch chia vẽ đoạn thẳng AB = 3 cm.
• Vẽ tia Ax vuông góc với AB và cung tròn tâm B bán kính 5 cm như Hình 4.51.
Cung tròn cắt tia Ax tại điểm C.
•Vẽ đoạn thẳng BC ta được tam giác ABC.
Phương pháp giải:
Vẽ tam giác theo các bước hướng dẫn.
Lời giải chi tiết:
HĐ 5
Tương tự, vẽ thêm tam giác ABC có A = 90°, AB = 3 cm, BC = 5 cm.
a) Dùng thước thẳng có vạch chia hoặc compa kiểm tra xem AC có bằng A'C' không?
b) Hai tam giác ABC và A'B'C' có bằng nhau không?
Phương pháp giải:
Dùng thước thẳng hoặc compa kiểm tra.
Lời giải chi tiết:
a) Dùng thước thẳng có vạch chia hoặc compa kiểm tra được AC = A'C'
b) Hai tam giác ABC và A'B'C' có bằng nhau vì 3 cặp cạnh đều bằng nhau
Câu hỏi
Hãy chỉ ra các cặp tam giác vuông bằng nhau dưới đây.
Phương pháp giải:
Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
Lời giải chi tiết:
Xét hai tam giác ABC vuông tại A và GHK vuông tại G có:
AB = GH (gt)
BC = HK (gt)
Do đó ΔABC=ΔGHK (cạnh huyền – cạnh góc vuông).
Xét hai tam giác DEF vuông tại D và MNP vuông tại M có:
DF = MP (gt)
EF = NP (gt)
Do đó ΔDEF=ΔMNP (cạnh huyền – cạnh góc vuông).
Vậy ΔABC=ΔGHK, ΔDEF=ΔMNP.
Luyện tập 3
Cho ba điểm A, B, C nằm trên đường tròn tâm O và các điểm M, N, P như Hình 4.54. Hãy chỉ ra ba cặp tam giác vuông bằng nhau trong hình.
Phương pháp giải:
Quan sát hình vẽ và chỉ ra 3 cặp tam giác vuông bằng nhau
Lời giải chi tiết:
Vì A, B, C nằm trên đường tròn tâm O nên OA = OB = OC.
Xét hai tam giác ONA vuông tại N và ONC vuông tại N có:
OA = OC (cmt)
ON chung
Do đó ΔONA=ΔONC (cạnh huyền – cạnh góc vuông).
Xét hai tam giác OMB vuông tại M và OMC vuông tại M có:
OB = OC (cmt)
OM chung
Do đó ΔOMB=ΔOMC (cạnh huyền – cạnh góc vuông).
Xét hai tam giác OPA vuông tại P và OPB vuông tại P có:
OA = OB (cmt)
OP chung
Do đó ΔOPA=ΔOPB (cạnh huyền – cạnh góc vuông).
Thử thách nhỏ
Có hai chiếc thang dài như nhau được dựa vào một bức tường với cùng độ cao BH = B’H’ như Hình 4.55. Các góc BAH và B'A'H có bằng nhau không? Vì sao?
Phương pháp giải:
Chứng minh hai tam giác BAH và B'A'H’ bằng nhau, từ đó suy ra 2 góc bằng nhau.
Lời giải chi tiết:
Xét hai tam giác BAH và B'A'H’ có:
AB=A’B’
BH=B’H’
Suy ra \(\Delta BAH = \Delta B'A'H'\) ( cạnh huyền – cạnh góc vuông)
=>\(\widehat {BAH}{\rm{ = }}\widehat {B'A'H}\)(hai góc tương ứng).
- Giải bài 4.20 trang 79 SGK Toán 7 tập 1 - Kết nối tri thức
- Giải bài 4.21 trang 79 SGK Toán 7 tập 1 - Kết nối tri thức
- Giải bài 4.22 trang 79 SGK Toán 7 tập 1 - Kết nối tri thức
- Giải mục 1 trang 75, 76, 77 SGK Toán 7 tập 1 - Kết nối tri thức
- Lý thuyết Trường hợp bằng nhau của tam giác vuông SGK Toán 7 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết quan hệ giữa ba cạnh của một tam giác Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa góc và cạnh đối diện trong một tam giác Toán 7 Kết nối tri thức
- Giải câu hỏi trang 108, 109 SGK Toán 7 Kết nối tri thức với cuộc sống tập 2
- Lý thuyết quan hệ giữa ba cạnh của một tam giác Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa góc và cạnh đối diện trong một tam giác Toán 7 Kết nối tri thức
- Giải câu hỏi trang 108, 109 SGK Toán 7 Kết nối tri thức với cuộc sống tập 2