Giải bài 9.12 trang 69 SGK Toán 7 tập 2 - Kết nối tri thức


Cho điểm M nằm bên trong tam giác ABC. Gọi N là giao điểm của đường thẳng AM và cạnh BC. (H.9.18) a) So sánh MB với MN + NB, từ đó suy ra MA + MB < NA + NB b) So sánh NA với CA + CN, từ đó suy ra NA + NB < CA + CB c) Chứng minh MA + MB < CA + CB.

Đề bài

Cho điểm M nằm bên trong tam giác ABC. Gọi N là giao điểm của đường thẳng AM và cạnh BC. (H.9.18)

a) So sánh MB với MN + NB, từ đó suy ra MA + MB < NA + NB

b) So sánh NA với CA + CN, từ đó suy ra NA + NB < CA + CB

c) Chứng minh MA + MB < CA + CB.

Phương pháp giải - Xem chi tiết

Sử dụng định lí:

+ Trong các đường xiên và đường vuông góc kẻ từ 1 điểm nằm ngoài 1 đường thẳng đến đường thẳng đó thì đường vuông góc là đường ngắn nhất.

+ Trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất.

Lời giải chi tiết

a) 3 điểm M,N,B không thẳng hàng.

Áp dụng bất đẳng thức tam giác trong tam giác MNB có:

MB < MN + NB

 MA + MB < MA + MN + NB

 MA + MB  < NA + NB ( vì MA + MN = NA) (1)

b) 3 điểm A,N,C không thẳng hàng.

Áp dụng bất đẳng thức tam giác trong tam giác ACN có:

NA < CA + CN

 NA + NB < CA + CN + NB

 NA + NB < CA + CB ( vì CN + NB = CB) (2)

c) Từ (1) và (2) ta có:

MA + MB < NA + NB < CA + CB

Vậy MA + MB < CA + CB


Bình chọn:
4.8 trên 71 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí