Giải bài 8 trang 89 SGK Toán 8 tập 1– Chân trời sáng tạo>
Cho hình bình hành
Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Cho hình bình hành \(ABCD\). Các điểm \(E\), \(F\) thuộc đường chéo \(AC\) sao cho \(AE = EF = FC\). Gọi \(M\) là trung điểm của \(BF\) và \(CD\), \(N\) là giao điểm của \(DE\) và \(AB\). Chứng minh rằng:
a) \(M\), \(N\) theo thứ tự là trung điểm của \(CD\), \(AB\)
b) \(EMFN\) là hình bình hành
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Áp dụng tính chất của hình bình hành
Áp dụng dấu hiệu nhận biết của hình bình hành
Lời giải chi tiết
a) Ta có:
\(AE = EF = FC\) nên \(AE = EF = FC = \frac{1}{3}AC\) (1)
Vì \(ABCD\) là hình bình hành (gt)
Suy ra \(O\) là trung điểm của \(AC\) hay \(OA = OC = \frac{1}{2}AC\) và \(AC = 2OA = 2OC\) (2)
Từ (1) và (2) suy ra \(AE = EF = FC = \frac{2}{3}OA = \frac{2}{3}OC\).
Xét \(\Delta BCD\) có \(CO\) là trung tuyến và \(CF = \frac{2}{3}CO\) (cmt)
Suy ra \(F\) là trọng tâm của \(\Delta BCD\)
Suy ra \(BM\) là đường trung tuyến của \(\Delta BCD\)
Suy ra \(M\) là trung điểm của \(CD\)
Xét \(\Delta ABD\) có \(AO\) là trung tuyến và \(AE = \frac{2}{3}AO\) (cmt)
Suy ra \(E\) là trọng tâm của \(\Delta ABD\)
Suy ra \(DN\) là đường trung tuyến của \(\Delta ABD\)
Suy ra \(N\) là trung điểm của \(AB\)
b) Do M là trung điểm của CD (câu a) nên \(MC = MD = \frac{1}{2}CD\).
N là trung điểm của AB (câu a) nên \(NB = NA = \frac{1}{2}AB\).
Mà AB = CD và AB // CD (do ABCD là hình bình hành)
Suy ra NB = MD và NB // MD.
Xét tứ giác BMDN có NB = MD và NB // MD
Do đó BMDN là hình bình hành.
Suy ra BM // DN và BM = DN.
Ta có E là trọng tâm của \(\Delta\)ABD nên \(EN = \frac{1}{3}DN\).
F là trọng tâm của \(\Delta\)BCD nên \(FM = \frac{1}{3}BM\).
Mà DN = BM (chứng minh trên) nên EN = FM.
Xét tứ giác EMFN có EN = FM và EN // FM (do BM // DN)
Suy ra EMFN là hình bình hành.
- Giải bài 9 trang 89 SGK Toán 8 tập 1– Chân trời sáng tạo
- Giải bài 10 trang 89 SGK Toán 8 tập 1– Chân trời sáng tạo
- Giải bài 11 trang 89 SGK Toán 8 tập 1– Chân trời sáng tạo
- Giải bài 12 trang 89 SGK Toán 8 tập 1– Chân trời sáng tạo
- Giải bài 7 trang 88 SGK Toán 8 tập 1– Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Xác suất lí thuyết và xác suất thực nghiệm SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Mô tả xác suất bằng tỉ số SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Hai hình đồng dạng SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Xác suất lí thuyết và xác suất thực nghiệm SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Mô tả xác suất bằng tỉ số SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Hai hình đồng dạng SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác SGK Toán 8 - Chân trời sáng tạo